Liang, Chen
KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection
Liang, Zhiyu, Cai, Dongrui, Zhang, Chenyuan, Liang, Zheng, Liang, Chen, Zheng, Bo, Qiu, Shi, Wang, Jin, Wang, Hongzhi
Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
Microsoft, null, :, null, Abouelenin, Abdelrahman, Ashfaq, Atabak, Atkinson, Adam, Awadalla, Hany, Bach, Nguyen, Bao, Jianmin, Benhaim, Alon, Cai, Martin, Chaudhary, Vishrav, Chen, Congcong, Chen, Dong, Chen, Dongdong, Chen, Junkun, Chen, Weizhu, Chen, Yen-Chun, Chen, Yi-ling, Dai, Qi, Dai, Xiyang, Fan, Ruchao, Gao, Mei, Gao, Min, Garg, Amit, Goswami, Abhishek, Hao, Junheng, Hendy, Amr, Hu, Yuxuan, Jin, Xin, Khademi, Mahmoud, Kim, Dongwoo, Kim, Young Jin, Lee, Gina, Li, Jinyu, Li, Yunsheng, Liang, Chen, Lin, Xihui, Lin, Zeqi, Liu, Mengchen, Liu, Yang, Lopez, Gilsinia, Luo, Chong, Madan, Piyush, Mazalov, Vadim, Mitra, Arindam, Mousavi, Ali, Nguyen, Anh, Pan, Jing, Perez-Becker, Daniel, Platin, Jacob, Portet, Thomas, Qiu, Kai, Ren, Bo, Ren, Liliang, Roy, Sambuddha, Shang, Ning, Shen, Yelong, Singhal, Saksham, Som, Subhojit, Song, Xia, Sych, Tetyana, Vaddamanu, Praneetha, Wang, Shuohang, Wang, Yiming, Wang, Zhenghao, Wu, Haibin, Xu, Haoran, Xu, Weijian, Yang, Yifan, Yang, Ziyi, Yu, Donghan, Zabir, Ishmam, Zhang, Jianwen, Zhang, Li Lyna, Zhang, Yunan, Zhou, Xiren
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
LLMs Can Generate a Better Answer by Aggregating Their Own Responses
Li, Zichong, Feng, Xinyu, Cai, Yuheng, Zhang, Zixuan, Liu, Tianyi, Liang, Chen, Chen, Weizhu, Wang, Haoyu, Zhao, Tuo
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
Efficiently Editing Mixture-of-Experts Models with Compressed Experts
He, Yifei, Liu, Yang, Liang, Chen, Awadalla, Hany Hassan
Mixture-of-Experts (MoE) models have become a key approach for scaling large language models efficiently by activating only a subset of experts during training and inference. Typically, the number of activated experts presents a trade-off: fewer experts reduce computational costs, while more experts improve performance. Recent studies reveal that not all activated experts contribute equally to model performance, with some providing minimal utility, particularly when finetuning pretrained MoE models for specialized downstream tasks. The co-existence of significant and redundant parameters in experts provides us an opportunity to reduce the number of activated experts while maintaining model performance. In this work, we propose the concept of compressed experts, lightweight modules that serve as compact representations of full experts. Our approach preserves the most important experts while replacing other auxiliary activated experts with compressed experts. The reduction of active parameters significantly lowers inference costs while achieving comparable performance. Extensive experiments on models including Phi-MoE and OLMoE demonstrate that compressed experts recover over 90% of full expert performance across various tasks while reducing more than 30% active parameters and saving 20% in inference costs. This approach enables efficient deployment of MoE models in resource-constrained settings and facilitates scaling to larger models with manageable overhead. Our code is available at https://github.com/yifei-he/Compressed-Experts.
COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs
Liu, Liming, Xu, Zhenghao, Zhang, Zixuan, Kang, Hao, Li, Zichong, Liang, Chen, Chen, Weizhu, Zhao, Tuo
Large Language Models (LLMs) have demonstrated remarkable success across various domains, yet their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit. While adaptive optimizers such as AdamW are widely used, they suffer from critical limitations, including an inability to capture interdependencies between coordinates and high memory consumption. Subsequent research, exemplified by SOAP, attempts to better capture coordinate interdependence but incurs greater memory overhead, limiting scalability for massive LLMs. An alternative approach aims to reduce memory consumption through low-dimensional projection, but this leads to substantial approximation errors, resulting in less effective optimization (e.g., in terms of per-token efficiency). In this paper, we propose COSMOS, a novel hybrid optimizer that leverages the varying importance of eigensubspaces in the gradient matrix to achieve memory efficiency without compromising optimization performance. The design of COSMOS is motivated by our empirical insights and practical considerations. Specifically, COSMOS applies SOAP to the leading eigensubspace, which captures the primary optimization dynamics, and MUON to the remaining eigensubspace, which is less critical but computationally expensive to handle with SOAP. This hybrid strategy significantly reduces memory consumption while maintaining robust optimization performance, making it particularly suitable for massive LLMs. Numerical experiments on various datasets and transformer architectures are provided to demonstrate the effectiveness of COSMOS. Our code is available at https://github.com/lliu606/COSMOS.
Event Argument Extraction with Enriched Prompts
Liang, Chen
This work aims to delve deeper into prompt-based event argument extraction (EAE) models. We explore the impact of incorporating various types of information into the prompt on model performance, including trigger, other role arguments for the same event, and role arguments across multiple events within the same document. Further, we provide the best possible performance that the prompt-based EAE model can attain and demonstrate such models can be further optimized from the perspective of the training objective. Experiments are carried out on three small language models and two large language models in RAMS.
ERCache: An Efficient and Reliable Caching Framework for Large-Scale User Representations in Meta's Ads System
Zhou, Fang, Huang, Yaning, Liang, Dong, Li, Dai, Zhang, Zhongke, Wang, Kai, Xin, Xiao, Aboelela, Abdallah, Jiang, Zheliang, Wang, Yang, Song, Jeff, Zhang, Wei, Liang, Chen, Li, Huayu, Sun, ChongLin, Yang, Hang, Qu, Lei, Shu, Zhan, Yuan, Mindi, Maccherani, Emanuele, Hayat, Taha, Guo, John, Puvvada, Varna, Pashkevich, Uladzimir
The increasing complexity of deep learning models used for calculating user representations presents significant challenges, particularly with limited computational resources and strict service-level agreements (SLAs). Previous research efforts have focused on optimizing model inference but have overlooked a critical question: is it necessary to perform user model inference for every ad request in large-scale social networks? To address this question and these challenges, we first analyze user access patterns at Meta and find that most user model inferences occur within a short timeframe. T his observation reveals a triangular relationship among model complexity, embedding freshness, and service SLAs. Building on this insight, we designed, implemented, and evaluated ERCache, an efficient and robust caching framework for large-scale user representations in ads recommendation systems on social networks. ERCache categorizes cache into direct and failover types and applies customized settings and eviction policies for each model, effectively balancing model complexity, embedding freshness, and service SLAs, even considering the staleness introduced by caching. ERCache has been deployed at Meta for over six months, supporting more than 30 ranking models while efficiently conserving computational resources and complying with service SLA requirements.
How Does the Disclosure of AI Assistance Affect the Perceptions of Writing?
Li, Zhuoyan, Liang, Chen, Peng, Jing, Yin, Ming
Recent advances in generative AI technologies like large language models have boosted the incorporation of AI assistance in writing workflows, leading to the rise of a new paradigm of human-AI co-creation in writing. To understand how people perceive writings that are produced under this paradigm, in this paper, we conduct an experimental study to understand whether and how the disclosure of the level and type of AI assistance in the writing process would affect people's perceptions of the writing on various aspects, including their evaluation on the quality of the writing and their ranking of different writings. Our results suggest that disclosing the AI assistance in the writing process, especially if AI has provided assistance in generating new content, decreases the average quality ratings for both argumentative essays and creative stories. This decrease in the average quality ratings often comes with an increased level of variations in different individuals' quality evaluations of the same writing. Indeed, factors such as an individual's writing confidence and familiarity with AI writing assistants are shown to moderate the impact of AI assistance disclosure on their writing quality evaluations. We also find that disclosing the use of AI assistance may significantly reduce the proportion of writings produced with AI's content generation assistance among the top-ranked writings.
Molecule Graph Networks with Many-body Equivariant Interactions
Mao, Zetian, Li, Jiawen, Liang, Chen, Das, Diptesh, Sumita, Masato, Tsuda, Koji
In recent years, machine learning (ML) models have shown great success in materials science by accurately predicting quantum properties of atomistic systems several orders of magnitude faster than ab initio simulations [1]. These ML models have practically assisted researchers in developing novel materials across various fields, such as fluorescent molecules [2], electret polymers [3] and so on. Graph neural networks (GNNs) [4, 5] are particularly notable among ML models for atomic systems because molecules are especially suitable for 3D graph representations where each atom is characterized by its 3D Cartesian coordinate. The 3D molecular information, such as bond lengths and angles, is crucial for model learning [6, 7, 8]. However, these rotationally invariant representations may lack directional information, causing the model to view distinct structures as identical [9, 10].
Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
Ren, Liliang, Liu, Yang, Lu, Yadong, Shen, Yelong, Liang, Chen, Chen, Weizhu
Efficiently modeling sequences with infinite context length has been a long-standing problem. Past works suffer from either the quadratic computation complexity or the limited extrapolation ability on length generalization. In this work, we present Samba, a simple hybrid architecture that layer-wise combines Mamba, a selective State Space Model (SSM), with Sliding Window Attention (SWA). Samba selectively compresses a given sequence into recurrent hidden states while still maintaining the ability to precisely recall memories with the attention mechanism. We scale Samba up to 3.8B parameters with 3.2T training tokens and show that Samba substantially outperforms the state-of-the-art models based on pure attention or SSMs on a wide range of benchmarks. When trained on 4K length sequences, Samba can be efficiently extrapolated to 256K context length with perfect memory recall and show improved token predictions up to 1M context length. As a linear-time sequence model, Samba enjoys a 3.73x higher throughput compared to Transformers with grouped-query attention when processing user prompts of 128K length, and 3.64x speedup when generating 64K tokens with unlimited streaming. A sample implementation of Samba is publicly available in https://github.com/microsoft/Samba.