Goto

Collaborating Authors

 Li, Zhuohang


SCE: Scalable Consistency Ensembles Make Blackbox Large Language Model Generation More Reliable

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable performance, yet their diverse strengths and weaknesses prevent any single LLM from achieving dominance across all tasks. Ensembling multiple LLMs is a promising approach to generate reliable responses but conventional ensembling frameworks suffer from high computational overheads. This work introduces Scalable Consistency Ensemble (SCE), an efficient framework for ensembling LLMs by prompting consistent outputs. The SCE framework systematically evaluates and integrates outputs to produce a cohesive result through two core components: SCE-CHECK, a mechanism that gauges the consistency between response pairs via semantic equivalence; and SCE-FUSION, which adeptly merges the highest-ranked consistent responses from SCE-CHECK, to optimize collective strengths and mitigating potential weaknesses. To improve the scalability with multiple inference queries, we further propose ``{You Only Prompt Once}'' (YOPO), a novel technique that reduces the inference complexity of pairwise comparison from quadratic to constant time. We perform extensive empirical evaluations on diverse benchmark datasets to demonstrate \methodName's effectiveness. Notably, the \saccheckcomponent outperforms conventional baselines with enhanced performance and a significant reduction in computational overhead.


Towards Statistical Factuality Guarantee for Large Vision-Language Models

arXiv.org Artificial Intelligence

Advancements in Large Vision-Language Models (LVLMs) have demonstrated promising performance in a variety of vision-language tasks involving image-conditioned free-form text generation. However, growing concerns about hallucinations in LVLMs, where the generated text is inconsistent with the visual context, are becoming a major impediment to deploying these models in applications that demand guaranteed reliability. In this paper, we introduce a framework to address this challenge, ConfLVLM, which is grounded on conformal prediction to achieve finite-sample distribution-free statistical guarantees on the factuality of LVLM output. This framework treats an LVLM as a hypothesis generator, where each generated text detail (or claim) is considered an individual hypothesis. It then applies a statistical hypothesis testing procedure to verify each claim using efficient heuristic uncertainty measures to filter out unreliable claims before returning any responses to users. We conduct extensive experiments covering three representative application domains, including general scene understanding, medical radiology report generation, and document understanding. Remarkably, ConfLVLM reduces the error rate of claims generated by LLaVa-1.5 for scene descriptions from 87.8\% to 10.0\% by filtering out erroneous claims with a 95.3\% true positive rate. Our results further demonstrate that ConfLVLM is highly flexible, and can be applied to any black-box LVLMs paired with any uncertainty measure for any image-conditioned free-form text generation task while providing a rigorous guarantee on controlling the risk of hallucination.


Automatic Prompt Optimization via Heuristic Search: A Survey

arXiv.org Artificial Intelligence

Recent advances in Large Language Models have led to remarkable achievements across a variety of Natural Language Processing tasks, making prompt engineering increasingly central to guiding model outputs. While manual methods can be effective, they typically rely on intuition and do not automatically refine prompts over time. In contrast, automatic prompt optimization employing heuristic-based search algorithms can systematically explore and improve prompts with minimal human oversight. This survey proposes a comprehensive taxonomy of these methods, categorizing them by where optimization occurs, what is optimized, what criteria drive the optimization, which operators generate new prompts, and which iterative search algorithms are applied. We further highlight specialized datasets and tools that support and accelerate automated prompt refinement. We conclude by discussing key open challenges pointing toward future opportunities for more robust and versatile LLM applications.


Do You Know What You Are Talking About? Characterizing Query-Knowledge Relevance For Reliable Retrieval Augmented Generation

arXiv.org Artificial Intelligence

Language models (LMs) are known to suffer from hallucinations and misinformation. Retrieval augmented generation (RAG) that retrieves verifiable information from an external knowledge corpus to complement the parametric knowledge in LMs provides a tangible solution to these problems. However, the generation quality of RAG is highly dependent on the relevance between a user's query and the retrieved documents. Inaccurate responses may be generated when the query is outside of the scope of knowledge represented in the external knowledge corpus or if the information in the corpus is out-of-date. In this work, we establish a statistical framework that assesses how well a query can be answered by an RAG system by capturing the relevance of knowledge. We introduce an online testing procedure that employs goodness-of-fit (GoF) tests to inspect the relevance of each user query to detect out-of-knowledge queries with low knowledge relevance. Additionally, we develop an offline testing framework that examines a collection of user queries, aiming to detect significant shifts in the query distribution which indicates the knowledge corpus is no longer sufficiently capable of supporting the interests of the users. We demonstrate the capabilities of these strategies through a systematic evaluation on eight question-answering (QA) datasets, the results of which indicate that the new testing framework is an efficient solution to enhance the reliability of existing RAG systems.


Why Does Differential Privacy with Large Epsilon Defend Against Practical Membership Inference Attacks?

arXiv.org Artificial Intelligence

For small privacy parameter $\epsilon$, $\epsilon$-differential privacy (DP) provides a strong worst-case guarantee that no membership inference attack (MIA) can succeed at determining whether a person's data was used to train a machine learning model. The guarantee of DP is worst-case because: a) it holds even if the attacker already knows the records of all but one person in the data set; and b) it holds uniformly over all data sets. In practical applications, such a worst-case guarantee may be overkill: practical attackers may lack exact knowledge of (nearly all of) the private data, and our data set might be easier to defend, in some sense, than the worst-case data set. Such considerations have motivated the industrial deployment of DP models with large privacy parameter (e.g. $\epsilon \geq 7$), and it has been observed empirically that DP with large $\epsilon$ can successfully defend against state-of-the-art MIAs. Existing DP theory cannot explain these empirical findings: e.g., the theoretical privacy guarantees of $\epsilon \geq 7$ are essentially vacuous. In this paper, we aim to close this gap between theory and practice and understand why a large DP parameter can prevent practical MIAs. To tackle this problem, we propose a new privacy notion called practical membership privacy (PMP). PMP models a practical attacker's uncertainty about the contents of the private data. The PMP parameter has a natural interpretation in terms of the success rate of a practical MIA on a given data set. We quantitatively analyze the PMP parameter of two fundamental DP mechanisms: the exponential mechanism and Gaussian mechanism. Our analysis reveals that a large DP parameter often translates into a much smaller PMP parameter, which guarantees strong privacy against practical MIAs. Using our findings, we offer principled guidance for practitioners in choosing the DP parameter.


DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models

arXiv.org Artificial Intelligence

Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.


SAC$^3$: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency

arXiv.org Artificial Intelligence

Hallucination detection is a critical step toward understanding the trustworthiness of modern language models (LMs). To achieve this goal, we re-examine existing detection approaches based on the self-consistency of LMs and uncover two types of hallucinations resulting from 1) question-level and 2) model-level, which cannot be effectively identified through self-consistency check alone. Building upon this discovery, we propose a novel sampling-based method, i.e., semantic-aware cross-check consistency (SAC$^3$) that expands on the principle of self-consistency checking. Our SAC$^3$ approach incorporates additional mechanisms to detect both question-level and model-level hallucinations by leveraging advances including semantically equivalent question perturbation and cross-model response consistency checking. Through extensive and systematic empirical analysis, we demonstrate that SAC$^3$ outperforms the state of the art in detecting both non-factual and factual statements across multiple question-answering and open-domain generation benchmarks.


Interactive Multi-fidelity Learning for Cost-effective Adaptation of Language Model with Sparse Human Supervision

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities in various tasks. However, their suitability for domain-specific tasks, is limited due to their immense scale at deployment, susceptibility to misinformation, and more importantly, high data annotation costs. We propose a novel Interactive Multi-Fidelity Learning (IMFL) framework for the cost-effective development of small domain-specific LMs under limited annotation budgets. Our approach formulates the domain-specific fine-tuning process as a multi-fidelity learning problem, focusing on identifying the optimal acquisition strategy that balances between low-fidelity automatic LLM annotations and high-fidelity human annotations to maximize model performance. We further propose an exploration-exploitation query strategy that enhances annotation diversity and informativeness, incorporating two innovative designs: 1) prompt retrieval that selects in-context examples from human-annotated samples to improve LLM annotation, and 2) variable batch size that controls the order for choosing each fidelity to facilitate knowledge distillation, ultimately enhancing annotation quality. Extensive experiments on financial and medical tasks demonstrate that IMFL achieves superior performance compared with single fidelity annotations. Given a limited budget of human annotation, IMFL significantly outperforms the human annotation baselines in all four tasks and achieves very close performance as human annotations on two of the tasks. These promising results suggest that the high human annotation costs in domain-specific tasks can be significantly reduced by employing IMFL, which utilizes fewer human annotations, supplemented with cheaper and faster LLM (e.g., GPT-3.5) annotations to achieve comparable performance.


Split Learning for Distributed Collaborative Training of Deep Learning Models in Health Informatics

arXiv.org Artificial Intelligence

Deep learning continues to rapidly evolve and is now demonstrating remarkable potential for numerous medical prediction tasks. However, realizing deep learning models that generalize across healthcare organizations is challenging. This is due, in part, to the inherent siloed nature of these organizations and patient privacy requirements. To address this problem, we illustrate how split learning can enable collaborative training of deep learning models across disparate and privately maintained health datasets, while keeping the original records and model parameters private. We introduce a new privacy-preserving distributed learning framework that offers a higher level of privacy compared to conventional federated learning. We use several biomedical imaging and electronic health record (EHR) datasets to show that deep learning models trained via split learning can achieve highly similar performance to their centralized and federated counterparts while greatly improving computational efficiency and reducing privacy risks.


Reconstruction Distortion of Learned Image Compression with Imperceptible Perturbations

arXiv.org Artificial Intelligence

Learned Image Compression (LIC) has recently become the trending technique for image transmission due to its notable performance. Despite its popularity, the robustness of LIC with respect to the quality of image reconstruction remains under-explored. In this paper, we introduce an imperceptible attack approach designed to effectively degrade the reconstruction quality of LIC, resulting in the reconstructed image being severely disrupted by noise where any object in the reconstructed images is virtually impossible. More specifically, we generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples. Further, leveraging the insensitivity of high-frequency components to human vision, we introduce Imperceptibility Constraint (IC) to ensure that the perturbations remain inconspicuous. Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness. In addition, we provide several findings and suggestions for designing future defenses.