Goto

Collaborating Authors

 Li, Zhijun


FoCTTA: Low-Memory Continual Test-Time Adaptation with Focus

arXiv.org Artificial Intelligence

Continual adaptation to domain shifts at test time (CTTA) is crucial for enhancing the intelligence of deep learning enabled IoT applications. However, prevailing TTA methods, which typically update all batch normalization (BN) layers, exhibit two memory inefficiencies. First, the reliance on BN layers for adaptation necessitates large batch sizes, leading to high memory usage. Second, updating all BN layers requires storing the activations of all BN layers for backpropagation, exacerbating the memory demand. Both factors lead to substantial memory costs, making existing solutions impractical for IoT devices. In this paper, we present FoCTTA, a low-memory CTTA strategy. The key is to automatically identify and adapt a few drift-sensitive representation layers, rather than blindly update all BN layers. The shift from BN to representation layers eliminates the need for large batch sizes. Also, by updating adaptation-critical layers only, FoCTTA avoids storing excessive activations. This focused adaptation approach ensures that FoCTTA is not only memory-efficient but also maintains effective adaptation. Evaluations show that FoCTTA improves the adaptation accuracy over the state-of-the-arts by 4.5%, 4.9%, and 14.8% on CIFAR10-C, CIFAR100-C, and ImageNet-C under the same memory constraints. Across various batch sizes, FoCTTA reduces the memory usage by 3-fold on average, while improving the accuracy by 8.1%, 3.6%, and 0.2%, respectively, on the three datasets.


SAC-ViT: Semantic-Aware Clustering Vision Transformer with Early Exit

arXiv.org Artificial Intelligence

The Vision Transformer (ViT) excels in global modeling but faces deployment challenges on resource-constrained devices due to the quadratic computational complexity of its attention mechanism. To address this, we propose the Semantic-Aware Clustering Vision Transformer (SAC-ViT), a non-iterative approach to enhance ViT's computational efficiency. SAC-ViT operates in two stages: Early Exit (EE) and Semantic-Aware Clustering (SAC). In the EE stage, downsampled input images are processed to extract global semantic information and generate initial inference results. If these results do not meet the EE termination criteria, the information is clustered into target and non-target tokens. In the SAC stage, target tokens are mapped back to the original image, cropped, and embedded. These target tokens are then combined with reused non-target tokens from the EE stage, and the attention mechanism is applied within each cluster. This two-stage design, with end-to-end optimization, reduces spatial redundancy and enhances computational efficiency, significantly boosting overall ViT performance. Extensive experiments demonstrate the efficacy of SAC-ViT, reducing 62% of the FLOPs of DeiT and achieving 1.98 times throughput without compromising performance.


FocusDD: Real-World Scene Infusion for Robust Dataset Distillation

arXiv.org Artificial Intelligence

Dataset distillation has emerged as a strategy to compress real-world datasets for efficient training. However, it struggles with large-scale and high-resolution datasets, limiting its practicality. This paper introduces a novel resolution-independent dataset distillation method Focus ed Dataset Distillation (FocusDD), which achieves diversity and realism in distilled data by identifying key information patches, thereby ensuring the generalization capability of the distilled dataset across different network architectures. Specifically, FocusDD leverages a pre-trained Vision Transformer (ViT) to extract key image patches, which are then synthesized into a single distilled image. These distilled images, which capture multiple targets, are suitable not only for classification tasks but also for dense tasks such as object detection. To further improve the generalization of the distilled dataset, each synthesized image is augmented with a downsampled view of the original image. Experimental results on the ImageNet-1K dataset demonstrate that, with 100 images per class (IPC), ResNet50 and MobileNet-v2 achieve validation accuracies of 71.0% and 62.6%, respectively, outperforming state-of-the-art methods by 2.8% and 4.7%. Notably, FocusDD is the first method to use distilled datasets for object detection tasks. On the COCO2017 dataset, with an IPC of 50, YOLOv11n and YOLOv11s achieve 24.4% and 32.1% mAP, respectively, further validating the effectiveness of our approach.


Gyroscope-Assisted Motion Deblurring Network

arXiv.org Artificial Intelligence

Image research has shown substantial attention in deblurring networks in recent years. Yet, their practical usage in real-world deblurring, especially motion blur, remains limited due to the lack of pixel-aligned training triplets (background, blurred image, and blur heat map) and restricted information inherent in blurred images. This paper presents a simple yet efficient framework to synthetic and restore motion blur images using Inertial Measurement Unit (IMU) data. Notably, the framework includes a strategy for training triplet generation, and a Gyroscope-Aided Motion Deblurring (GAMD) network for blurred image restoration. The rationale is that through harnessing IMU data, we can determine the transformation of the camera pose during the image exposure phase, facilitating the deduction of the motion trajectory (aka. blur trajectory) for each point inside the three-dimensional space. Thus, the synthetic triplets using our strategy are inherently close to natural motion blur, strictly pixel-aligned, and mass-producible. Through comprehensive experiments, we demonstrate the advantages of the proposed framework: only two-pixel errors between our synthetic and real-world blur trajectories, a marked improvement (around 33.17%) of the state-of-the-art deblurring method MIMO on Peak Signal-to-Noise Ratio (PSNR).


Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security

arXiv.org Artificial Intelligence

Since the advent of personal computing devices, intelligent personal assistants (IPAs) have been one of the key technologies that researchers and engineers have focused on, aiming to help users efficiently obtain information and execute tasks, and provide users with more intelligent, convenient, and rich interaction experiences. With the development of smartphones and IoT, computing and sensing devices have become ubiquitous, greatly expanding the boundaries of IPAs. However, due to the lack of capabilities such as user intent understanding, task planning, tool using, and personal data management etc., existing IPAs still have limited practicality and scalability. Recently, the emergence of foundation models, represented by large language models (LLMs), brings new opportunities for the development of IPAs. With the powerful semantic understanding and reasoning capabilities, LLM can enable intelligent agents to solve complex problems autonomously. In this paper, we focus on Personal LLM Agents, which are LLM-based agents that are deeply integrated with personal data and personal devices and used for personal assistance. We envision that Personal LLM Agents will become a major software paradigm for end-users in the upcoming era. To realize this vision, we take the first step to discuss several important questions about Personal LLM Agents, including their architecture, capability, efficiency and security. We start by summarizing the key components and design choices in the architecture of Personal LLM Agents, followed by an in-depth analysis of the opinions collected from domain experts. Next, we discuss several key challenges to achieve intelligent, efficient and secure Personal LLM Agents, followed by a comprehensive survey of representative solutions to address these challenges.


LF-ViT: Reducing Spatial Redundancy in Vision Transformer for Efficient Image Recognition

arXiv.org Artificial Intelligence

The Vision Transformer (ViT) excels in accuracy when handling high-resolution images, yet it confronts the challenge of significant spatial redundancy, leading to increased computational and memory requirements. To address this, we present the Localization and Focus Vision Transformer (LF-ViT). This model operates by strategically curtailing computational demands without impinging on performance. In the Localization phase, a reduced-resolution image is processed; if a definitive prediction remains elusive, our pioneering Neighborhood Global Class Attention (NGCA) mechanism is triggered, effectively identifying and spotlighting class-discriminative regions based on initial findings. Subsequently, in the Focus phase, this designated region is used from the original image to enhance recognition. Uniquely, LF-ViT employs consistent parameters across both phases, ensuring seamless end-to-end optimization. Our empirical tests affirm LF-ViT's prowess: it remarkably decreases Deit-S's FLOPs by 63\% and concurrently amplifies throughput twofold. Code of this project is at https://github.com/edgeai1/LF-ViT.git.


Spreeze: High-Throughput Parallel Reinforcement Learning Framework

arXiv.org Artificial Intelligence

The promotion of large-scale applications of reinforcement learning (RL) requires efficient training computation. While existing parallel RL frameworks encompass a variety of RL algorithms and parallelization techniques, the excessively burdensome communication frameworks hinder the attainment of the hardware's limit for final throughput and training effects on a single desktop. In this paper, we propose Spreeze, a lightweight parallel framework for RL that efficiently utilizes a single desktop hardware resource to approach the throughput limit. We asynchronously parallelize the experience sampling, network update, performance evaluation, and visualization operations, and employ multiple efficient data transmission techniques to transfer various types of data between processes. The framework can automatically adjust the parallelization hyperparameters based on the computing ability of the hardware device in order to perform efficient large-batch updates. Based on the characteristics of the "Actor-Critic" RL algorithm, our framework uses dual GPUs to independently update the network of actors and critics in order to further improve throughput. Simulation results show that our framework can achieve up to 15,000Hz experience sampling and 370,000Hz network update frame rate using only a personal desktop computer, which is an order of magnitude higher than other mainstream parallel RL frameworks, resulting in a 73% reduction of training time. Our work on fully utilizing the hardware resources of a single desktop computer is fundamental to enabling efficient large-scale distributed RL training.


Vision-Based Reactive Planning and Control of Quadruped Robots in Unstructured Dynamic Environments

arXiv.org Artificial Intelligence

Abstract-- Quadruped robots have received increasing attention for the past few years. For instance, Cheetah can reach a top speed I. INTRODUCTION A controlled backflip is achieved by Panther locomotion capability of quadruped robots like the MIT by representing the rotational dynamics using the rotation Cheetah [1] and ETH Anymal [2]. Still, few prior works focus on solving tasks to find one in daily scenarios, since the dynamic and with complex temporal and logic constraints in unstructured unstructured environment poses significant challenges to and dynamic environments. Hence, this work is motivated to To this end, we consider a robot integrated with vision develop a reactive planning and control strategy for quadruped performing high-level linear temporal logic (LTL) tasks that robots with temporal logic specifications and multi-modal encode position constraints to the target object, as shown in perception to enable mission operation in unstructured Figure 1. To cope with unstructured dynamic environments, we dynamic environments.