Not enough data to create a plot.
Try a different view from the menu above.
Li, Zhibin
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Zhang, Pengsong, Zhang, Heng, Xu, Huazhe, Xu, Renjun, Wang, Zhenting, Wang, Cong, Garg, Animesh, Li, Zhibin, Ajoudani, Arash, Liu, Xinyu
Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.
Structured and sparse partial least squares coherence for multivariate cortico-muscular analysis
Sun, Jingyao, Zhang, Qilu, Ma, Di, Jia, Tianyu, Jia, Shijie, Zhai, Xiaoxue, Xie, Ruimou, Lin, Ping-Ju, Li, Zhibin, Pan, Yu, Ji, Linhong, Li, Chong
Multivariate cortico-muscular analysis has recently emerged as a promising approach for evaluating the corticospinal neural pathway. However, current multivariate approaches encounter challenges such as high dimensionality and limited sample sizes, thus restricting their further applications. In this paper, we propose a structured and sparse partial least squares coherence algorithm (ssPLSC) to extract shared latent space representations related to cortico-muscular interactions. Our approach leverages an embedded optimization framework by integrating a partial least squares (PLS)-based objective function, a sparsity constraint and a connectivity-based structured constraint, addressing the generalizability, interpretability and spatial structure. To solve the optimization problem, we develop an efficient alternating iterative algorithm within a unified framework and prove its convergence experimentally. Extensive experimental results from one synthetic and several real-world datasets have demonstrated that ssPLSC can achieve competitive or better performance over some representative multivariate cortico-muscular fusion methods, particularly in scenarios characterized by limited sample sizes and high noise levels. This study provides a novel multivariate fusion method for cortico-muscular analysis, offering a transformative tool for the evaluation of corticospinal pathway integrity in neurological disorders.
Motion planning for highly-dynamic unconditioned reflexes based on chained Signed Distance Functions
Lin, Ken, Ye, Qi, Lam, Tin Lun, Li, Zhibin, Chen, Jiming, Li, Gaofeng
The unconditioned reflex (e.g., protective reflex), which is the innate reaction of the organism and usually performed through the spinal cord rather than the brain, can enable organisms to escape harms from environments. In this paper, we propose an online, highly-dynamic motion planning algorithm to endow manipulators the highly-dynamic unconditioned reflexes to humans and/or environments. Our method is based on a chained version of Signed Distance Functions (SDFs), which can be pre-computed and stored. Our proposed algorithm is divided into two stages. In the offline stage, we create 3 groups of local SDFs to store the geometric information of the manipulator and its working environment. In the online stage, the pre-computed local SDFs are chained together according the configuration of the manipulator, to provide global geometric information about the environment. While the point clouds of the dynamic objects serve as query points to look up these local SDFs for quickly generating escape velocity. Then we propose a modified geometric Jacobian matrix and use the Jacobian-pseudo-inverse method to generate real-time reflex behaviors to avoid the static and dynamic obstacles in the environment. The benefits of our method are validated in both static and dynamic scenarios. In the static scenario, our method identifies the path solutions with lower time consumption and shorter trajectory length compared to existing solutions. In the dynamic scenario, our method can reliably pursue the dynamic target point, avoid dynamic obstacles, and react to these obstacles within 1ms, which surpasses the unconditioned reflex reaction time of humans.
Discovery of skill switching criteria for learning agile quadruped locomotion
Yu, Wanming, Acero, Fernando, Atanassov, Vassil, Yang, Chuanyu, Havoutis, Ioannis, Kanoulas, Dimitrios, Li, Zhibin
This paper develops a hierarchical learning and optimization framework that can learn and achieve well-coordinated multi-skill locomotion. The learned multi-skill policy can switch between skills automatically and naturally in tracking arbitrarily positioned goals and recover from failures promptly. The proposed framework is composed of a deep reinforcement learning process and an optimization process. First, the contact pattern is incorporated into the reward terms for learning different types of gaits as separate policies without the need for any other references. Then, a higher level policy is learned to generate weights for individual policies to compose multi-skill locomotion in a goal-tracking task setting. Skills are automatically and naturally switched according to the distance to the goal. The proper distances for skill switching are incorporated in reward calculation for learning the high level policy and updated by an outer optimization loop as learning progresses. We first demonstrated successful multi-skill locomotion in comprehensive tasks on a simulated Unitree A1 quadruped robot. We also deployed the learned policy in the real world showcasing trotting, bounding, galloping, and their natural transitions as the goal position changes. Moreover, the learned policy can react to unexpected failures at any time, perform prompt recovery, and resume locomotion successfully. Compared to discrete switch between single skills which failed to transition to galloping in the real world, our proposed approach achieves all the learned agile skills, with smoother and more continuous skill transitions.
Achieving Dexterous Bidirectional Interaction in Uncertain Conditions for Medical Robotics
Tiseo, Carlo, Rouxel, Quentin, Asenov, Martin, Babarahmati, Keyhan Kouhkiloui, Ramamoorthy, Subramanian, Li, Zhibin, Mistry, Michael
Medical robotics can help improve and extend the reach of healthcare services. A major challenge for medical robots is the complex physical interaction between the robot and the patients which is required to be safe. This work presents the preliminary evaluation of a recently introduced control architecture based on the Fractal Impedance Control (FIC) in medical applications. The deployed FIC architecture is robust to delay between the master and the replica robots. It can switch online between an admittance and impedance behaviour, and it is robust to interaction with unstructured environments. Our experiments analyse three scenarios: teleoperated surgery, rehabilitation, and remote ultrasound scan. The experiments did not require any adjustment of the robot tuning, which is essential in medical applications where the operators do not have an engineering background required to tune the controller. Our results show that is possible to teleoperate the robot to cut using a scalpel, do an ultrasound scan, and perform remote occupational therapy. However, our experiments also highlighted the need for a better robots embodiment to precisely control the system in 3D dynamic tasks.
Learning Adaptive Hydrodynamic Models Using Neural ODEs in Complex Conditions
Wang, Cong, Liang, Aoming, Han, Fei, Zeng, Xinyu, Li, Zhibin, Fan, Dixia, Kober, Jens
Reinforcement learning-based quadruped robots excel across various terrains but still lack the ability to swim in water due to the complex underwater environment. This paper presents the development and evaluation of a data-driven hydrodynamic model for amphibious quadruped robots, aiming to enhance their adaptive capabilities in complex and dynamic underwater environments. The proposed model leverages Neural Ordinary Differential Equations (ODEs) combined with attention mechanisms to accurately process and interpret real-time sensor data. The model enables the quadruped robots to understand and predict complex environmental patterns, facilitating robust decision-making strategies. We harness real-time sensor data, capturing various environmental and internal state parameters to train and evaluate our model. A significant focus of our evaluation involves testing the quadruped robot's performance across different hydrodynamic conditions and assessing its capabilities at varying speeds and fluid dynamic conditions. The outcomes suggest that the model can effectively learn and adapt to varying conditions, enabling the prediction of force states and enhancing autonomous robotic behaviors in various practical scenarios.
Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games
Herr, Nathan, Acero, Fernando, Raileanu, Roberta, Pรฉrez-Ortiz, Marรญa, Li, Zhibin
Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic abilities remain largely unexplored. Game theory provides a good framework for assessing the decision-making abilities of LLMs in interactions with other agents. Although prior studies have shown that LLMs can solve these tasks with carefully curated prompts, they fail when the problem setting or prompt changes. In this work we investigate LLMs' behaviour in strategic games, Stag Hunt and Prisoner Dilemma, analyzing performance variations under different settings and prompts. Our results show that the tested state-of-the-art LLMs exhibit at least one of the following systematic biases: (1) positional bias, (2) payoff bias, or (3) behavioural bias. Subsequently, we observed that the LLMs' performance drops when the game configuration is misaligned with the affecting biases. Performance is assessed based on the selection of the correct action, one which agrees with the prompted preferred behaviours of both players. Alignment refers to whether the LLM's bias aligns with the correct action. For example, GPT-4o's average performance drops by 34% when misaligned. Additionally, the current trend of "bigger and newer is better" does not hold for the above, where GPT-4o (the current best-performing LLM) suffers the most substantial performance drop. Lastly, we note that while chain-of-thought prompting does reduce the effect of the biases on most models, it is far from solving the problem at the fundamental level.
3D Feature Distillation with Object-Centric Priors
Tziafas, Georgios, Xu, Yucheng, Li, Zhibin, Kasaei, Hamidreza
Grounding natural language to the physical world is a ubiquitous topic with a wide range of applications in computer vision and robotics. Recently, 2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images. Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific and hence lack generalization, or focus on indoor room scan data that require access to multiple camera views, which is not practical in robot manipulation scenarios. Additionally, related methods typically fuse features at pixel-level and assume that all camera views are equally informative. In this work, we show that this approach leads to sub-optimal 3D features, both in terms of grounding accuracy, as well as segmentation crispness. To alleviate this, we propose a multi-view feature fusion strategy that employs object-centric priors to eliminate uninformative views based on semantic information, and fuse features at object-level via instance segmentation masks. To distill our object-centric 3D features, we generate a large-scale synthetic multi-view dataset of cluttered tabletop scenes, spawning 15k scenes from over 3300 unique object instances, which we make publicly available. We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency, while doing so from single-view RGB-D, thus departing from the assumption of multiple camera views at test time. Finally, we show that our approach can generalize to novel tabletop domains and be re-purposed for 3D instance segmentation without fine-tuning, and demonstrate its utility for language-guided robotic grasping in clutter
Towards Generalist Robot Learning from Internet Video: A Survey
McCarthy, Robert, Tan, Daniel C. H., Schmidt, Dominik, Acero, Fernando, Herr, Nathan, Du, Yilun, Thuruthel, Thomas G., Li, Zhibin
This survey presents an overview of methods for learning from video (LfV) in the context of reinforcement learning (RL) and robotics. We focus on methods capable of scaling to large internet video datasets and, in the process, extracting foundational knowledge about the world's dynamics and physical human behaviour. Such methods hold great promise for developing general-purpose robots. We open with an overview of fundamental concepts relevant to the LfV-for-robotics setting. This includes a discussion of the exciting benefits LfV methods can offer (e.g., improved generalization beyond the available robot data) and commentary on key LfV challenges (e.g., missing information in video and LfV distribution shifts). Our literature review begins with an analysis of video foundation model techniques that can extract knowledge from large, heterogeneous video datasets. Next, we review methods that specifically leverage video data for robot learning. Here, we categorise work according to which RL knowledge modality (KM) benefits from the use of video data. We additionally highlight techniques for mitigating LfV challenges, including reviewing action representations that address missing action labels in video. Finally, we examine LfV datasets and benchmarks, before concluding with a discussion of challenges and opportunities in LfV. Here, we advocate for scalable foundation model approaches that can leverage the full range of internet video data, and that target the learning of the most promising RL KMs: the policy and dynamics model. Overall, we hope this survey will serve as a comprehensive reference for the emerging field of LfV, catalysing further research in the area and facilitating progress towards the development of general-purpose robots.
DexSkills: Skill Segmentation Using Haptic Data for Learning Autonomous Long-Horizon Robotic Manipulation Tasks
Mao, Xiaofeng, Giudici, Gabriele, Coppola, Claudio, Althoefer, Kaspar, Farkhatdinov, Ildar, Li, Zhibin, Jamone, Lorenzo
Effective execution of long-horizon tasks with dexterous robotic hands remains a significant challenge in real-world problems. While learning from human demonstrations have shown encouraging results, they require extensive data collection for training. Hence, decomposing long-horizon tasks into reusable primitive skills is a more efficient approach. To achieve so, we developed DexSkills, a novel supervised learning framework that addresses long-horizon dexterous manipulation tasks using primitive skills. DexSkills is trained to recognize and replicate a select set of skills using human demonstration data, which can then segment a demonstrated long-horizon dexterous manipulation task into a sequence of primitive skills to achieve one-shot execution by the robot directly. Significantly, DexSkills operates solely on proprioceptive and tactile data, i.e., haptic data. Our real-world robotic experiments show that DexSkills can accurately segment skills, thereby enabling autonomous robot execution of a diverse range of tasks.