Goto

Collaborating Authors

 Li, Yunpeng


Sebra: Debiasing Through Self-Guided Bias Ranking

arXiv.org Artificial Intelligence

Ranking samples by fine-grained estimates of spuriosity (the degree to which spurious cues are present) has recently been shown to significantly benefit bias mitigation, over the traditional binary biased-vs-unbiased partitioning of train sets. However, this spuriousity ranking comes with the requirement of human supervision. In this paper, we propose a debiasing framework based on our novel Self-Guided Bias Ranking (Sebra), that mitigates biases (spurious correlations) via an automatic ranking of data points by spuriosity within their respective classes. Sebra leverages a key local symmetry in Empirical Risk Minimization (ERM) training - the ease of learning a sample via ERM inversely correlates with its spuriousity; the fewer spurious correlations a sample exhibits, the harder it is to learn, and vice versa. However, globally across iterations, ERM tends to deviate from this symmetry. Sebra dynamically steers ERM to correct this deviation, facilitating the sequential learning of attributes in increasing order of difficulty, i.e., decreasing order of spuriosity. As a result, the sequence in which Sebra learns samples naturally provides spuriousity rankings. We use the resulting fine-grained bias characterization in a contrastive learning framework to mitigate biases from multiple sources. Extensive experiments show that Sebra consistently outperforms previous state-of-the-art unsupervised debiasing techniques across multiple standard benchmarks, including UrbanCars, BAR, CelebA, and ImageNet-1K. Distribution shifts driven by spurious correlations (aka biases or shortcuts) are arguably one of the most studied forms of subpopulation shift (Koh et al., 2021; Yang et al., 2023). Models trained on data that have certain easy-to-learn attributes, spuriously correlated with labels, can overly rely on such spurious attributes, resulting in suboptimal performance during deployment (Geirhos et al., 2019). Both supervised (Sagawa et al., 2020; Idrissi et al., 2022) and unsupervised (Nam et al., 2020; Liu et al., 2021; Li et al., 2022; Park et al., 2023) methodologies for making neural networks robust to spurious correlations, a task also known as debiasing, have been developed.


Differentiable Interacting Multiple Model Particle Filtering

arXiv.org Machine Learning

We propose a sequential Monte Carlo algorithm for parameter learning when the studied model exhibits random discontinuous jumps in behaviour. To facilitate the learning of high dimensional parameter sets, such as those associated to neural networks, we adopt the emerging framework of differentiable particle filtering, wherein parameters are trained by gradient descent. We design a new differentiable interacting multiple model particle filter to be capable of learning the individual behavioural regimes and the model which controls the jumping simultaneously. In contrast to previous approaches, our algorithm allows control of the computational effort assigned per regime whilst using the probability of being in a given regime to guide sampling. Furthermore, we develop a new gradient estimator that has a lower variance than established approaches and remains fast to compute, for which we prove consistency. We establish new theoretical results of the presented algorithms and demonstrate superior numerical performance compared to the previous state-of-the-art algorithms.


H-FCBFormer Hierarchical Fully Convolutional Branch Transformer for Occlusal Contact Segmentation with Articulating Paper

arXiv.org Artificial Intelligence

Occlusal contacts are the locations at which the occluding surfaces of the maxilla and the mandible posterior teeth meet. Occlusal contact detection is a vital tool for restoring the loss of masticatory function and is a mandatory assessment in the field of dentistry, with particular importance in prosthodontics and restorative dentistry. The most common method for occlusal contact detection is articulating paper. However, this method can indicate significant medically false positive and medically false negative contact areas, leaving the identification of true occlusal indications to clinicians. To address this, we propose a multiclass Vision Transformer and Fully Convolutional Network ensemble semantic segmentation model with a combination hierarchical loss function, which we name as Hierarchical Fully Convolutional Branch Transformer (H-FCBFormer). We also propose a method of generating medically true positive semantic segmentation masks derived from expert annotated articulating paper masks and gold standard masks. The proposed model outperforms other machine learning methods evaluated at detecting medically true positive contacts and performs better than dentists in terms of accurately identifying object-wise occlusal contact areas while taking significantly less time to identify them.


Regime Learning for Differentiable Particle Filters

arXiv.org Artificial Intelligence

Differentiable particle filters are an emerging class of models that combine sequential Monte Carlo techniques with the flexibility of neural networks to perform state space inference. This paper concerns the case where the system may switch between a finite set of state-space models, i.e. regimes. No prior approaches effectively learn both the individual regimes and the switching process simultaneously. In this paper, we propose the neural network based regime learning differentiable particle filter (RLPF) to address this problem. We further design a training procedure for the RLPF and other related algorithms. We demonstrate competitive performance compared to the previous state-of-the-art algorithms on a pair of numerical experiments.


Revisiting semi-supervised training objectives for differentiable particle filters

arXiv.org Machine Learning

Differentiable particle filters combine the flexibility of neural networks with the probabilistic nature of sequential Monte Carlo methods. However, traditional approaches rely on the availability of labelled data, i.e., the ground truth latent state information, which is often difficult to obtain in real-world applications. This paper compares the effectiveness of two semi-supervised training objectives for differentiable particle filters. We present results in two simulated environments where labelled data are scarce.


Normalising Flow-based Differentiable Particle Filters

arXiv.org Artificial Intelligence

Recently, there has been a surge of interest in incorporating neural networks into particle filters, e.g. differentiable particle filters, to perform joint sequential state estimation and model learning for non-linear non-Gaussian state-space models in complex environments. Existing differentiable particle filters are mostly constructed with vanilla neural networks that do not allow density estimation. As a result, they are either restricted to a bootstrap particle filtering framework or employ predefined distribution families (e.g. Gaussian distributions), limiting their performance in more complex real-world scenarios. In this paper we present a differentiable particle filtering framework that uses (conditional) normalising flows to build its dynamic model, proposal distribution, and measurement model. This not only enables valid probability densities but also allows the proposed method to adaptively learn these modules in a flexible way, without being restricted to predefined distribution families. We derive the theoretical properties of the proposed filters and evaluate the proposed normalising flow-based differentiable particle filters' performance through a series of numerical experiments.


StreamVC: Real-Time Low-Latency Voice Conversion

arXiv.org Artificial Intelligence

We present StreamVC, a streaming voice conversion solution that preserves the content and prosody of any source speech while matching the voice timbre from any target speech. Unlike previous approaches, StreamVC produces the resulting waveform at low latency from the input signal even on a mobile platform, making it applicable to real-time communication scenarios like calls and video conferencing, and addressing use cases such as voice anonymization in these scenarios. Our design leverages the architecture and training strategy of the SoundStream neural audio codec for lightweight high-quality speech synthesis. We demonstrate the feasibility of learning soft speech units causally, as well as the effectiveness of supplying whitened fundamental frequency information to improve pitch stability without leaking the source timbre information.


Learning Differentiable Particle Filter on the Fly

arXiv.org Artificial Intelligence

Differentiable particle filters are an emerging class of sequential Bayesian inference techniques that use neural networks to construct components in state space models. Existing approaches are mostly based on offline supervised training strategies. This leads to the delay of the model deployment and the obtained filters are susceptible to distribution shift of test-time data. In this paper, we propose an online learning framework for differentiable particle filters so that model parameters can be updated as data arrive. The technical constraint is that there is no known ground truth state information in the online inference setting. We address this by adopting an unsupervised loss to construct the online model updating procedure, which involves a sequence of filtering operations for online maximum likelihood-based parameter estimation. We empirically evaluate the effectiveness of the proposed method, and compare it with supervised learning methods in simulation settings including a multivariate linear Gaussian state-space model and a simulated object tracking experiment.


An overview of differentiable particle filters for data-adaptive sequential Bayesian inference

arXiv.org Artificial Intelligence

By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, their performance relies on the knowledge of dynamic models and measurement models, as well as the construction of effective proposal distributions. An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent, and such data-adaptive particle filtering approaches are often called differentiable particle filters. Due to the expressiveness of neural networks, differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks, such as vision-based robot localisation. In this paper, we review recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices for key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.


Differentiable Bootstrap Particle Filters for Regime-Switching Models

arXiv.org Artificial Intelligence

Differentiable particle filters are an emerging class of particle filtering methods that use neural networks to construct and learn parametric state-space models. In real-world applications, both the state dynamics and measurements can switch between a set of candidate models. For instance, in target tracking, vehicles can idle, move through traffic, or cruise on motorways, and measurements are collected in different geographical or weather conditions. This paper proposes a new differentiable particle filter for regime-switching state-space models. The method can learn a set of unknown candidate dynamic and measurement models and track the state posteriors. We evaluate the performance of the novel algorithm in relevant models, showing its great performance compared to other competitive algorithms.