Goto

Collaborating Authors

 Li, Yuefeng


Random Forest-of-Thoughts: Uncertainty-aware Reasoning for Computational Social Science

arXiv.org Artificial Intelligence

Social surveys in computational social science are well-designed by elaborate domain theories that can effectively reflect the interviewee's deep thoughts without concealing their true feelings. The candidate questionnaire options highly depend on the interviewee's previous answer, which results in the complexity of social survey analysis, the time, and the expertise required. The ability of large language models (LLMs) to perform complex reasoning is well-enhanced by prompting learning such as Chain-of-thought (CoT) but still confined to left-to-right decision-making processes or limited paths during inference. This means they can fall short in problems that require exploration and uncertainty searching. In response, a novel large language model prompting method, called Random Forest of Thoughts (RFoT), is proposed for generating uncertainty reasoning to fit the area of computational social science. The RFoT allows LLMs to perform deliberate decision-making by generating diverse thought space and randomly selecting the sub-thoughts to build the forest of thoughts. It can extend the exploration and prediction of overall performance, benefiting from the extensive research space of response. The method is applied to optimize computational social science analysis on two datasets covering a spectrum of social survey analysis problems. Our experiments show that RFoT significantly enhances language models' abilities on two novel social survey analysis problems requiring non-trivial reasoning.


A Comprehensive Survey on Spectral Clustering with Graph Structure Learning

arXiv.org Artificial Intelligence

Spectral clustering is a powerful technique for clustering high-dimensional data, utilizing graph-based representations to detect complex, non-linear structures and non-convex clusters. The construction of a similarity graph is essential for ensuring accurate and effective clustering, making graph structure learning (GSL) central for enhancing spectral clustering performance in response to the growing demand for scalable solutions. Despite advancements in GSL, there is a lack of comprehensive surveys specifically addressing its role within spectral clustering. To bridge this gap, this survey presents a comprehensive review of spectral clustering methods, emphasizing on the critical role of GSL. We explore various graph construction techniques, including pairwise, anchor, and hypergraph-based methods, in both fixed and adaptive settings. Additionally, we categorize spectral clustering approaches into single-view and multi-view frameworks, examining their applications within one-step and two-step clustering processes. We also discuss multi-view information fusion techniques and their impact on clustering data. By addressing current challenges and proposing future research directions, this survey provides valuable insights for advancing spectral clustering methodologies and highlights the pivotal role of GSL in tackling large-scale and high-dimensional data clustering tasks.


Nonnegative Matrix Factorization in Dimensionality Reduction: A Survey

arXiv.org Artificial Intelligence

Dimensionality Reduction plays a pivotal role in improving feature learning accuracy and reducing training time by eliminating redundant features, noise, and irrelevant data. Nonnegative Matrix Factorization (NMF) has emerged as a popular and powerful method for dimensionality reduction. Despite its extensive use, there remains a need for a comprehensive analysis of NMF in the context of dimensionality reduction. To address this gap, this paper presents a comprehensive survey of NMF, focusing on its applications in both feature extraction and feature selection. We introduce a classification of dimensionality reduction, enhancing understanding of the underlying concepts. Subsequently, we delve into a thorough summary of diverse NMF approaches used for feature extraction and selection. Furthermore, we discuss the latest research trends and potential future directions of NMF in dimensionality reduction, aiming to highlight areas that need further exploration and development.


DE-CGAN: Boosting rTMS Treatment Prediction with Diversity Enhancing Conditional Generative Adversarial Networks

arXiv.org Artificial Intelligence

Repetitive Transcranial Magnetic Stimulation (rTMS) is a well-supported, evidence-based treatment for depression. However, patterns of response to this treatment are inconsistent. Emerging evidence suggests that artificial intelligence can predict rTMS treatment outcomes for most patients using fMRI connectivity features. While these models can reliably predict treatment outcomes for many patients for some underrepresented fMRI connectivity measures DNN models are unable to reliably predict treatment outcomes. As such we propose a novel method, Diversity Enhancing Conditional General Adversarial Network (DE-CGAN) for oversampling these underrepresented examples. DE-CGAN creates synthetic examples in difficult-to-classify regions by first identifying these data points and then creating conditioned synthetic examples to enhance data diversity. Through empirical experiments we show that a classification model trained using a diversity enhanced training set outperforms traditional data augmentation techniques and existing benchmark results. This work shows that increasing the diversity of a training dataset can improve classification model performance. Furthermore, this work provides evidence for the utility of synthetic patients providing larger more robust datasets for both AI researchers and psychiatrists to explore variable relationships.


Graph-enabled Reinforcement Learning for Time Series Forecasting with Adaptive Intelligence

arXiv.org Artificial Intelligence

Reinforcement learning is well known for its ability to model sequential tasks and learn latent data patterns adaptively. Deep learning models have been widely explored and adopted in regression and classification tasks. However, deep learning has its limitations such as the assumption of equally spaced and ordered data, and the lack of ability to incorporate graph structure in terms of time-series prediction. Graphical neural network (GNN) has the ability to overcome these challenges and capture the temporal dependencies in time-series data. In this study, we propose a novel approach for predicting time-series data using GNN and monitoring with Reinforcement Learning (RL). GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way. This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting. We also fine-tune our GraphRL model using a Bayesian optimisation technique to further improve performance. The proposed framework outperforms the baseline models in time-series forecasting and monitoring. The contributions of this study include the introduction of a novel GraphRL framework for time-series prediction and the demonstration of the effectiveness of GNNs in comparison to traditional deep learning models such as RNNs and LSTMs. Overall, this study demonstrates the potential of GraphRL in providing accurate and efficient predictions in dynamic RL environments.


FedStack: Personalized activity monitoring using stacked federated learning

arXiv.org Artificial Intelligence

Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations and challenges such as predicting and classifying vital signs and physical movements, which are considered crucial tasks. Federated learning is a relatively new AI technique designed to enhance data privacy by decentralizing traditional machine learning modeling. However, traditional federated learning requires identical architectural models to be trained across the local clients and global servers. This limits global model architecture due to the lack of local models heterogeneity. To overcome this, a novel federated learning architecture, FedStack, which supports ensembling heterogeneous architectural client models was proposed in this study. This work offers a protected privacy system for hospitalized in-patients in a decentralized approach and identifies optimum sensor placement. The proposed architecture was applied to a mobile health sensor benchmark dataset from 10 different subjects to classify 12 routine activities. Three AI models, ANN, CNN, and Bi-LSTM were trained on individual subject data. The federated learning architecture was applied to these models to build local and global models capable of state of the art performances. The local CNN model outperformed ANN and Bi-LSTM models on each subject data. Our proposed work has demonstrated better performance for heterogeneous stacking of the local models compared to homogeneous stacking. This work sets the stage to build an enhanced RPM system that incorporates client privacy to assist with clinical observations for patients in an acute mental health facility and ultimately help to prevent unexpected death.