Goto

Collaborating Authors

 Li, Yuang


Optimizing Speech Multi-View Feature Fusion through Conditional Computation

arXiv.org Artificial Intelligence

Recent advancements have highlighted the efficacy of self-supervised learning (SSL) features in various speech-related tasks, providing lightweight and versatile multi-view speech representations. However, our study reveals that while SSL features expedite model convergence, they conflict with traditional spectral features like FBanks in terms of update directions. In response, we propose a novel generalized feature fusion framework grounded in conditional computation, featuring a gradient-sensitive gating network and a multi-stage dropout strategy. This framework mitigates feature conflicts and bolsters model robustness to multi-view input features. By integrating SSL and spectral features, our approach accelerates convergence and maintains performance on par with spectral models across multiple speech translation tasks on the MUSTC dataset.


Investigating Numerical Translation with Large Language Models

arXiv.org Artificial Intelligence

The inaccurate translation of numbers can lead to significant security issues, ranging from financial setbacks to medical inaccuracies. While large language models (LLMs) have made significant advancements in machine translation, their capacity for translating numbers has not been thoroughly explored. This study focuses on evaluating the reliability of LLM-based machine translation systems when handling numerical data. In order to systematically test the numerical translation capabilities of currently open source LLMs, we have constructed a numerical translation dataset between Chinese and English based on real business data, encompassing ten types of numerical translation. Experiments on the dataset indicate that errors in numerical translation are a common issue, with most open-source LLMs faltering when faced with our test scenarios. Especially when it comes to numerical types involving large units like ``million", ``billion", and "yi", even the latest llama3.1 8b model can have error rates as high as 20%. Finally, we introduce three potential strategies to mitigate the numerical mistranslations for large units.


"I've Heard of You!": Generate Spoken Named Entity Recognition Data for Unseen Entities

arXiv.org Artificial Intelligence

Spoken named entity recognition (NER) aims to identify named entities from speech, playing an important role in speech processing. New named entities appear every day, however, annotating their Spoken NER data is costly. In this paper, we demonstrate that existing Spoken NER systems perform poorly when dealing with previously unseen named entities. To tackle this challenge, we propose a method for generating Spoken NER data based on a named entity dictionary (NED) to reduce costs. Specifically, we first use a large language model (LLM) to generate sentences from the sampled named entities and then use a text-to-speech (TTS) system to generate the speech. Furthermore, we introduce a noise metric to filter out noisy data. To evaluate our approach, we release a novel Spoken NER benchmark along with a corresponding NED containing 8,853 entities. Experiment results show that our method achieves state-of-the-art (SOTA) performance in the in-domain, zero-shot domain adaptation, and fully zero-shot settings. Our data will be available at https://github.com/DeepLearnXMU/HeardU.


Hard-Synth: Synthesizing Diverse Hard Samples for ASR using Zero-Shot TTS and LLM

arXiv.org Artificial Intelligence

Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems using text-only corpora, thereby reducing the cost of labeling real speech data. Existing research primarily utilizes additional text data and predefined speech styles supported by TTS models. In this paper, we propose Hard-Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS. Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data. Rather than using predefined speech styles, we introduce a hard prompt selection method with zero-shot TTS to clone speech styles that the ASR model finds challenging to recognize. Experiments demonstrate that Hard-Synth significantly enhances the Conformer model, achieving relative word error rate (WER) reductions of 6.5\%/4.4\% on LibriSpeech dev/test-other subsets. Additionally, we show that Hard-Synth is data-efficient and capable of reducing bias in ASR.


Large Language Model Should Understand Pinyin for Chinese ASR Error Correction

arXiv.org Artificial Intelligence

Large language models can enhance automatic speech recognition systems through generative error correction. In this paper, we propose Pinyin-enhanced GEC, which leverages Pinyi, the phonetic representation of Mandarin Chinese, as supplementary information to improve Chinese ASR error correction. Our approach only utilizes synthetic errors for training and employs the one-best hypothesis during inference. Additionally, we introduce a multitask training approach involving conversion tasks between Pinyin and text to align their feature spaces. Experiments on the Aishell-1 and the Common Voice datasets demonstrate that our approach consistently outperforms GEC with text-only input. More importantly, we provide intuitive explanations for the effectiveness of PY-GEC and multitask training from two aspects: 1) increased attention weight on Pinyin features; and 2) aligned feature space between Pinyin and text hidden states.


Why Not Transform Chat Large Language Models to Non-English?

arXiv.org Artificial Intelligence

The scarcity of non-English data limits the development of non-English large language models (LLMs). Transforming English-centric LLMs to non-English has been identified as an effective and resource-efficient method. Previous works start from base LLMs and perform knowledge distillation (KD) with data generated by stronger LLMs, e.g. GPT-4. Compared to base LLMs, chat LLMs are further optimized for advanced abilities, e.g. multi-turn conversation and human preference alignment, and thus more powerful in both helpfulness and safety. However, transforming a chat LLM involves two critical issues: (1) How can we effectively transfer advanced abilities without their supervised data? (2) How can we prevent the original knowledge from catastrophic forgetting during transformation? We target these issues by introducing a simple framework called TransLLM. For the first issue, TransLLM divides the transfer problem into some common sub-tasks with the translation chain-of-thought, which uses the translation as the bridge between English and non-English step-by-step. We further enhance the performance of sub-tasks with publicly available data. For the second issue, we propose a method comprising two synergistic components: low-rank adaptation for training to maintain the original LLM parameters, and recovery KD, which utilizes data generated by the chat LLM itself to recover the original knowledge from the frozen parameters. In the experiments, we transform the LLaMA-2-chat-7B to the Thai language. Our method, using only single-turn data, outperforms strong baselines and ChatGPT on multi-turn benchmark MT-bench. Furthermore, our method, without safety data, rejects more harmful queries of safety benchmark AdvBench than both ChatGPT and GPT-4.


Cross-Domain Audio Deepfake Detection: Dataset and Analysis

arXiv.org Artificial Intelligence

Audio deepfake detection (ADD) is essential for preventing the misuse of synthetic voices that may infringe on personal rights and privacy. Recent zero-shot text-to-speech (TTS) models pose higher risks as they can clone voices with a single utterance. However, the existing ADD datasets are outdated, leading to suboptimal generalization of detection models. In this paper, we construct a new cross-domain ADD dataset comprising over 300 hours of speech data that is generated by five advanced zero-shot TTS models. To simulate real-world scenarios, we employ diverse attack methods and audio prompts from different datasets. Experiments show that, through novel attack-augmented training, the Wav2Vec2-large and Whisper-medium models achieve equal error rates of 4.1\% and 6.5\% respectively. Additionally, we demonstrate our models' outstanding few-shot ADD ability by fine-tuning with just one minute of target-domain data. Nonetheless, neural codec compressors greatly affect the detection accuracy, necessitating further research.


A Multitask Training Approach to Enhance Whisper with Contextual Biasing and Open-Vocabulary Keyword Spotting

arXiv.org Artificial Intelligence

End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations, and terminologies not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI's Whisper model that can recognize user-defined name entities by performing open-vocabulary keyword-spotting (OV-KWS) using the hidden states of Whisper encoder. The recognized entities are used as prompts for the Whisper decoder. We first propose a multitask training approach with OV-KWS and ASR tasks to optimize the model. Experiments show that this approach substantially improves the entity recalls compared to the original Whisper model on Chinese Aishell hot word subsets and two internal code-switch test sets. However, we observed a slight increase in mixed-error-rate (MER) on internal test sets due to catastrophic forgetting. To address this problem and use different sizes of the Whisper model without finetuning, we propose to use OV-KWS as a separate module and construct a spoken form prompt to prevent hallucination. The OV-KWS module consistently improves MER and Entity Recall for whisper-small, medium, and large models.


Using Large Language Model for End-to-End Chinese ASR and NER

arXiv.org Artificial Intelligence

Mapping speech tokens to the same feature space as text tokens has become the paradigm for the integration of speech modality into decoder-only large language models (LLMs). An alternative approach is to use an encoder-decoder architecture that incorporates speech features through cross-attention. This approach, however, has received less attention in the literature. In this work, we connect the Whisper encoder with ChatGLM3 and provide in-depth comparisons of these two approaches using Chinese automatic speech recognition (ASR) and name entity recognition (NER) tasks. We evaluate them not only by conventional metrics like the F1 score but also by a novel fine-grained taxonomy of ASR-NER errors. Our experiments reveal that encoder-decoder architecture outperforms decoder-only architecture with a short context, while decoder-only architecture benefits from a long context as it fully exploits all layers of the LLM. By using LLM, we significantly reduced the entity omission errors and improved the entity ASR accuracy compared to the Conformer baseline. Additionally, we obtained a state-of-the-art (SOTA) F1 score of 0.805 on the AISHELL-NER test set by using chain-of-thought (CoT) NER which first infers long-form ASR transcriptions and then predicts NER labels.


Prompting Large Language Models for Zero-Shot Domain Adaptation in Speech Recognition

arXiv.org Artificial Intelligence

The integration of Language Models (LMs) has proven to be an effective way to address domain shifts in speech recognition. However, these approaches usually require a significant amount of target domain text data for the training of LMs. Different from these methods, in this work, with only a domain-specific text prompt, we propose two zero-shot ASR domain adaptation methods using LLaMA, a 7-billion-parameter large language model (LLM). LLM is used in two ways: 1) second-pass rescoring: reranking N-best hypotheses of a given ASR system with LLaMA; 2) deep LLM-fusion: incorporating LLM into the decoder of an encoder-decoder based ASR system. Experiments show that, with only one domain prompt, both methods can effectively reduce word error rates (WER) on out-of-domain TedLium-2 and SPGISpeech datasets. Especially, the deep LLM-fusion has the advantage of better recall of entity and out-of-vocabulary words.