Goto

Collaborating Authors

 Li, Yishu


FlowBotHD: History-Aware Diffuser Handling Ambiguities in Articulated Objects Manipulation

arXiv.org Artificial Intelligence

We introduce a novel approach for manipulating articulated objects which are visually ambiguous, such doors which are symmetric or which are heavily occluded. These ambiguities can cause uncertainty over different possible articulation modes: for instance, when the articulation direction (e.g. push, pull, slide) or location (e.g. left side, right side) of a fully closed door are uncertain, or when distinguishing features like the plane of the door are occluded due to the viewing angle. To tackle these challenges, we propose a history-aware diffusion network that can model multi-modal distributions over articulation modes for articulated objects; our method further uses observation history to distinguish between modes and make stable predictions under occlusions. Experiments and analysis demonstrate that our method achieves state-of-art performance on articulated object manipulation and dramatically improves performance for articulated objects containing visual ambiguities. Our project website is available at https://flowbothd.github.io/.


MonoPlane: Exploiting Monocular Geometric Cues for Generalizable 3D Plane Reconstruction

arXiv.org Artificial Intelligence

This paper presents a generalizable 3D plane detection and reconstruction framework named MonoPlane. Unlike previous robust estimator-based works (which require multiple images or RGB-D input) and learning-based works (which suffer from domain shift), MonoPlane combines the best of two worlds and establishes a plane reconstruction pipeline based on monocular geometric cues, resulting in accurate, robust and scalable 3D plane detection and reconstruction in the wild. Specifically, we first leverage large-scale pre-trained neural networks to obtain the depth and surface normals from a single image. These monocular geometric cues are then incorporated into a proximity-guided RANSAC framework to sequentially fit each plane instance. We exploit effective 3D point proximity and model such proximity via a graph within RANSAC to guide the plane fitting from noisy monocular depths, followed by image-level multi-plane joint optimization to improve the consistency among all plane instances. We further design a simple but effective pipeline to extend this single-view solution to sparse-view 3D plane reconstruction. Extensive experiments on a list of datasets demonstrate our superior zero-shot generalizability over baselines, achieving state-of-the-art plane reconstruction performance in a transferring setting. Our code is available at https://github.com/thuzhaowang/MonoPlane .