Li, Yanwei
MME-CoT: Benchmarking Chain-of-Thought in Large Multimodal Models for Reasoning Quality, Robustness, and Efficiency
Jiang, Dongzhi, Zhang, Renrui, Guo, Ziyu, Li, Yanwei, Qi, Yu, Chen, Xinyan, Wang, Liuhui, Jin, Jianhan, Guo, Claire, Yan, Shen, Zhang, Bo, Fu, Chaoyou, Gao, Peng, Li, Hongsheng
Answering questions with Chain-of-Thought (CoT) has significantly enhanced the reasoning capabilities of Large Language Models (LLMs), yet its impact on Large Multimodal Models (LMMs) still lacks a systematic assessment and in-depth investigation. In this paper, we introduce MME-CoT, a specialized benchmark evaluating the CoT reasoning performance of LMMs, spanning six domains: math, science, OCR, logic, space-time, and general scenes. As the first comprehensive study in this area, we propose a thorough evaluation suite incorporating three novel metrics that assess the reasoning quality, robustness, and efficiency at a fine-grained level. Leveraging curated high-quality data and a unique evaluation strategy, we conduct an in-depth analysis of state-of-the-art LMMs, uncovering several key insights: 1) Models with reflection mechanism demonstrate a superior CoT quality, with Kimi k1.5 outperforming GPT-4o and demonstrating the highest quality results; 2) CoT prompting often degrades LMM performance on perception-heavy tasks, suggesting a potentially harmful overthinking behavior; and 3) Although the CoT quality is high, LMMs with reflection exhibit significant inefficiency in both normal response and self-correction phases. We hope MME-CoT serves as a foundation for advancing multimodal reasoning in LMMs. Project Page: https://mmecot.github.io/
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
Fu, Chaoyou, Dai, Yuhan, Luo, Yongdong, Li, Lei, Ren, Shuhuai, Zhang, Renrui, Wang, Zihan, Zhou, Chenyu, Shen, Yunhang, Zhang, Mengdan, Chen, Peixian, Li, Yanwei, Lin, Shaohui, Zhao, Sirui, Li, Ke, Xu, Tong, Zheng, Xiawu, Chen, Enhong, Ji, Rongrong, Sun, Xing
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models
Li, Yanwei, Zhang, Yuechen, Wang, Chengyao, Zhong, Zhisheng, Chen, Yixin, Chu, Ruihang, Liu, Shaoteng, Jia, Jiaya
In this work, we introduce Mini-Gemini, a simple and effective framework enhancing multi-modality Vision Language Models (VLMs). Despite the advancements in VLMs facilitating basic visual dialog and reasoning, a performance gap persists compared to advanced models like GPT-4 and Gemini. We try to narrow the gap by mining the potential of VLMs for better performance and any-to-any workflow from three aspects, i.e., high-resolution visual tokens, high-quality data, and VLM-guided generation. To enhance visual tokens, we propose to utilize an additional visual encoder for high-resolution refinement without increasing the visual token count. We further construct a high-quality dataset that promotes precise image comprehension and reasoning-based generation, expanding the operational scope of current VLMs. In general, Mini-Gemini further mines the potential of VLMs and empowers current frameworks with image understanding, reasoning, and generation simultaneously. Mini-Gemini supports a series of dense and MoE Large Language Models (LLMs) from 2B to 34B. It is demonstrated to achieve leading performance in several zero-shot benchmarks and even surpasses the developed private models. Code and models are available at https://github.com/dvlab-research/MiniGemini.
RL-GPT: Integrating Reinforcement Learning and Code-as-policy
Liu, Shaoteng, Yuan, Haoqi, Hu, Minda, Li, Yanwei, Chen, Yukang, Liu, Shu, Lu, Zongqing, Jia, Jiaya
Large Language Models (LLMs) have demonstrated proficiency in utilizing various tools by coding, yet they face limitations in handling intricate logic and precise control. In embodied tasks, high-level planning is amenable to direct coding, while low-level actions often necessitate task-specific refinement, such as Reinforcement Learning (RL). To seamlessly integrate both modalities, we introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent. The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks. This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline. Our approach outperforms traditional RL methods and existing GPT agents, demonstrating superior efficiency. In the Minecraft game, it rapidly obtains diamonds within a single day on an RTX3090. Additionally, it achieves SOTA performance across all designated MineDojo tasks.
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
Li, Yanwei, Wang, Chengyao, Jia, Jiaya
In this work, we present a novel method to tackle the token generation challenge in Vision Language Models (VLMs) for video and image understanding, called LLaMA-VID. Current VLMs, while proficient in tasks like image captioning and visual question answering, face computational burdens when processing long videos due to the excessive visual tokens. LLaMA-VID addresses this issue by representing each frame with two distinct tokens, namely context token and content token. The context token encodes the overall image context based on user input, whereas the content token encapsulates visual cues in each frame. This dual-token strategy significantly reduces the overload of long videos while preserving critical information. Generally, LLaMA-VID empowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is proved to surpass previous methods on most of video- or image-based benchmarks. Code is available https://github.com/dvlab-research/LLaMA-VID}{https://github.com/dvlab-research/LLaMA-VID
GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction
Yang, Rui, Song, Lin, Li, Yanwei, Zhao, Sijie, Ge, Yixiao, Li, Xiu, Shan, Ying
This paper aims to efficiently enable Large Language Models (LLMs) to use multimodal tools. Advanced proprietary LLMs, such as ChatGPT and GPT-4, have shown great potential for tool usage through sophisticated prompt engineering. Nevertheless, these models typically rely on prohibitive computational costs and publicly inaccessible data. To address these challenges, we propose the GPT4Tools based on self-instruct to enable open-source LLMs, such as LLaMA and OPT, to use tools. It generates an instruction-following dataset by prompting an advanced teacher with various multi-modal contexts. By using the Low-Rank Adaptation (LoRA) optimization, our approach facilitates the open-source LLMs to solve a range of visual problems, including visual comprehension and image generation. Moreover, we provide a benchmark to evaluate the ability of LLMs to use tools, which is performed in both zero-shot and fine-tuning ways. Extensive experiments demonstrate the effectiveness of our method on various language models, which not only significantly improves the accuracy of invoking seen tools, but also enables the zero-shot capacity for unseen tools.
Rethinking Learnable Tree Filter for Generic Feature Transform
Song, Lin, Li, Yanwei, Jiang, Zhengkai, Li, Zeming, Zhang, Xiangyu, Sun, Hongbin, Sun, Jian, Zheng, Nanning
The Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation. Nevertheless, the intrinsic geometric constraint forces it to focus on the regions with close spatial distance, hindering the effective long-range interactions. To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term. Besides, we propose a learnable spanning tree algorithm to replace the original non-differentiable one, which further improves the flexibility and robustness. With the above improvements, our method can better capture long-range dependencies and preserve structural details with linear complexity, which is extended to several vision tasks for more generic feature transform. Extensive experiments on object detection/instance segmentation demonstrate the consistent improvements over the original version. For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles. Code is available at https://github.com/StevenGrove/LearnableTreeFilterV2.
Fine-Grained Dynamic Head for Object Detection
Song, Lin, Li, Yanwei, Jiang, Zhengkai, Li, Zeming, Sun, Hongbin, Sun, Jian, Zheng, Nanning
The Feature Pyramid Network (FPN) presents a remarkable approach to alleviate the scale variance in object representation by performing instance-level assignments. Nevertheless, this strategy ignores the distinct characteristics of different sub-regions in an instance. To this end, we propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance, which further releases the ability of multi-scale feature representation. Moreover, we design a spatial gate with the new activation function to reduce computational complexity dramatically through spatially sparse convolutions. Extensive experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
Process Extraction from Texts via Multi-Task Architecture
Qian, Chen, Wen, Lijie, Long, MingSheng, Li, Yanwei, Kumar, Akhil, Wang, Jianmin
Process extraction, a recently emerged interdiscipline, aims to extract procedural knowledge expressed in texts. Previous process extractors heavily depend on domain-specific linguistic knowledge, thus suffer from the problems of poor quality and lack of adaptability. In this paper, we propose a multi-task architecture based model to perform process extraction. This is the first attempt that brings deep learning in process extraction. Specifically, we divide process extraction into three complete and independent subtasks: sentence classification, sentence semantic recognition and semantic role labeling. All of these subtasks are trained jointly, using a weight-sharing multi-task learning (MTL) framework. Moreover, instead of using fixed-size filters, we use multiscale convolutions to perceive more local contextual features. Finally, we propose a recurrent construction algorithm to create a graphical representation from the extracted procedural knowledge. Experimental results demonstrate that our approach can extract more accurate procedural information than state-of-the-art baselines.