Li, Yanghao
Improve Vision Language Model Chain-of-thought Reasoning
Zhang, Ruohong, Zhang, Bowen, Li, Yanghao, Zhang, Haotian, Sun, Zhiqing, Gan, Zhe, Yang, Yinfei, Pang, Ruoming, Yang, Yiming
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.
Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs
Tian, Runchu, Li, Yanghao, Fu, Yuepeng, Deng, Siyang, Luo, Qinyu, Qian, Cheng, Wang, Shuo, Cong, Xin, Zhang, Zhong, Wu, Yesai, Lin, Yankai, Wang, Huadong, Liu, Xiaojiang
Positional bias in large language models (LLMs) hinders their ability to effectively process long inputs. A prominent example is the "lost in the middle" phenomenon, where LLMs struggle to utilize relevant information situated in the middle of the input. While prior research primarily focuses on single pieces of relevant information, real-world applications often involve multiple relevant information pieces. To bridge this gap, we present LongPiBench, a benchmark designed to assess positional bias involving multiple pieces of relevant information. Thorough experiments are conducted with five commercial and six open-source models. These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces. These findings highlight the importance of evaluating and reducing positional biases to advance LLM's capabilities.
MM-Ego: Towards Building Egocentric Multimodal LLMs
Ye, Hanrong, Zhang, Haotian, Daxberger, Erik, Chen, Lin, Lin, Zongyu, Li, Yanghao, Zhang, Bowen, You, Haoxuan, Xu, Dan, Gan, Zhe, Lu, Jiasen, Yang, Yinfei
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.
EC-DIT: Scaling Diffusion Transformers with Adaptive Expert-Choice Routing
Sun, Haotian, Lei, Tao, Zhang, Bowen, Li, Yanghao, Huang, Haoshuo, Pang, Ruoming, Dai, Bo, Du, Nan
Diffusion transformers have been widely adopted for text-to-image synthesis. While scaling these models up to billions of parameters shows promise, the effectiveness of scaling beyond current sizes remains underexplored and challenging. By explicitly exploiting the computational heterogeneity of image generations, we develop a new family of Mixture-of-Experts (MoE) models (EC-DIT) for diffusion transformers with expert-choice routing. EC-DIT learns to adaptively optimize the compute allocated to understand the input texts and generate the respective image patches, enabling heterogeneous computation aligned with varying text-image complexities. This heterogeneity provides an efficient way of scaling EC-DIT up to 97 billion parameters and achieving significant improvements in training convergence, text-to-image alignment, and overall generation quality over dense models and conventional MoE models. Through extensive ablations, we show that EC-DIT demonstrates superior scalability and adaptive compute allocation by recognizing varying textual importance through end-to-end training. Notably, in text-to-image alignment evaluation, our largest models achieve a state-of-the-art GenEval score of 71.68% and still maintain competitive inference speed with intuitive interpretability.
MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
Zhang, Haotian, Gao, Mingfei, Gan, Zhe, Dufter, Philipp, Wenzel, Nina, Huang, Forrest, Shah, Dhruti, Du, Xianzhi, Zhang, Bowen, Li, Yanghao, Dodge, Sam, You, Keen, Yang, Zhen, Timofeev, Aleksei, Xu, Mingze, Chen, Hong-You, Fauconnier, Jean-Philippe, Lai, Zhengfeng, You, Haoxuan, Wang, Zirui, Dehghan, Afshin, Grasch, Peter, Yang, Yinfei
We present MM1.5, a new family of multimodal large language models (MLLMs) designed to enhance capabilities in text-rich image understanding, visual referring and grounding, and multi-image reasoning. Building upon the MM1 architecture, MM1.5 adopts a data-centric approach to model training, systematically exploring the impact of diverse data mixtures across the entire model training lifecycle. This includes high-quality OCR data and synthetic captions for continual pre-training, as well as an optimized visual instruction-tuning data mixture for supervised fine-tuning. Our models range from 1B to 30B parameters, encompassing both dense and mixture-of-experts (MoE) variants, and demonstrate that careful data curation and training strategies can yield strong performance even at small scales (1B and 3B). Additionally, we introduce two specialized variants: MM1.5-Video, designed for video understanding, and MM1.5-UI, tailored for mobile UI understanding. Through extensive empirical studies and ablations, we provide detailed insights into the training processes and decisions that inform our final designs, offering valuable guidance for future research in MLLM development.
Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
Ryali, Chaitanya, Hu, Yuan-Ting, Bolya, Daniel, Wei, Chen, Fan, Haoqi, Huang, Po-Yao, Aggarwal, Vaibhav, Chowdhury, Arkabandhu, Poursaeed, Omid, Hoffman, Judy, Malik, Jitendra, Li, Yanghao, Feichtenhofer, Christoph
Modern hierarchical vision transformers have added several vision-specific components in the pursuit of supervised classification performance. While these components lead to effective accuracies and attractive FLOP counts, the added complexity actually makes these transformers slower than their vanilla ViT counterparts. In this paper, we argue that this additional bulk is unnecessary. By pretraining with a strong visual pretext task (MAE), we can strip out all the bells-and-whistles from a state-of-the-art multi-stage vision transformer without losing accuracy. In the process, we create Hiera, an extremely simple hierarchical vision transformer that is more accurate than previous models while being significantly faster both at inference and during training. We evaluate Hiera on a variety of tasks for image and video recognition. Our code and models are available at https://github.com/facebookresearch/hiera.
Reversible Vision Transformers
Mangalam, Karttikeya, Fan, Haoqi, Li, Yanghao, Wu, Chao-Yuan, Xiong, Bo, Feichtenhofer, Christoph, Malik, Jitendra
We present Reversible Vision Transformers, a memory efficient architecture design for visual recognition. By decoupling the GPU memory requirement from the depth of the model, Reversible Vision Transformers enable scaling up architectures with efficient memory usage. We adapt two popular models, namely Vision Transformer and Multiscale Vision Transformers, to reversible variants and benchmark extensively across both model sizes and tasks of image classification, object detection and video classification. Reversible Vision Transformers achieve a reduced memory footprint of up to 15.5x at roughly identical model complexity, parameters and accuracy, demonstrating the promise of reversible vision transformers as an efficient backbone for hardware resource limited training regimes. Finally, we find that the additional computational burden of recomputing activations is more than overcome for deeper models, where throughput can increase up to 2.3x over their non-reversible counterparts. Full code and trained models are available at https://github.com/facebookresearch/slowfast. A simpler, easy to understand and modify version is also available at https://github.com/karttikeya/minREV
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Grauman, Kristen, Westbury, Andrew, Byrne, Eugene, Chavis, Zachary, Furnari, Antonino, Girdhar, Rohit, Hamburger, Jackson, Jiang, Hao, Liu, Miao, Liu, Xingyu, Martin, Miguel, Nagarajan, Tushar, Radosavovic, Ilija, Ramakrishnan, Santhosh Kumar, Ryan, Fiona, Sharma, Jayant, Wray, Michael, Xu, Mengmeng, Xu, Eric Zhongcong, Zhao, Chen, Bansal, Siddhant, Batra, Dhruv, Cartillier, Vincent, Crane, Sean, Do, Tien, Doulaty, Morrie, Erapalli, Akshay, Feichtenhofer, Christoph, Fragomeni, Adriano, Fu, Qichen, Fuegen, Christian, Gebreselasie, Abrham, Gonzalez, Cristina, Hillis, James, Huang, Xuhua, Huang, Yifei, Jia, Wenqi, Khoo, Weslie, Kolar, Jachym, Kottur, Satwik, Kumar, Anurag, Landini, Federico, Li, Chao, Li, Yanghao, Li, Zhenqiang, Mangalam, Karttikeya, Modhugu, Raghava, Munro, Jonathan, Murrell, Tullie, Nishiyasu, Takumi, Price, Will, Puentes, Paola Ruiz, Ramazanova, Merey, Sari, Leda, Somasundaram, Kiran, Southerland, Audrey, Sugano, Yusuke, Tao, Ruijie, Vo, Minh, Wang, Yuchen, Wu, Xindi, Yagi, Takuma, Zhu, Yunyi, Arbelaez, Pablo, Crandall, David, Damen, Dima, Farinella, Giovanni Maria, Ghanem, Bernard, Ithapu, Vamsi Krishna, Jawahar, C. V., Joo, Hanbyul, Kitani, Kris, Li, Haizhou, Newcombe, Richard, Oliva, Aude, Park, Hyun Soo, Rehg, James M., Sato, Yoichi, Shi, Jianbo, Shou, Mike Zheng, Torralba, Antonio, Torresani, Lorenzo, Yan, Mingfei, Malik, Jitendra
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/
Multiscale Vision Transformers
Fan, Haoqi, Xiong, Bo, Mangalam, Karttikeya, Li, Yanghao, Yan, Zhicheng, Malik, Jitendra, Feichtenhofer, Christoph
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10x more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https://github.com/facebookresearch/SlowFast
Co-Occurrence Feature Learning for Skeleton Based Action Recognition Using Regularized Deep LSTM Networks
Zhu, Wentao (University of California, Irvine) | Lan, Cuiling (Microsoft Research Asia) | Xing, Junliang (Institute of Automation, Chinese Academy of Sciences) | Zeng, Wenjun (Microsoft Research Asia) | Li, Yanghao (Peking University) | Shen, Li (University of Chinese Academy of Sciences) | Xie, Xiaohui (University of California, Irvine)
Skeleton based action recognition distinguishes human actions using the trajectories of skeleton joints, which provide a very good representation for describing actions. Considering that recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) can learn feature representations and model long-term temporal dependencies automatically, we propose an end-to-end fully connected deep LSTM network for skeleton based action recognition. Inspired by the observation that the co-occurrences of the joints intrinsically characterize human actions, we take the skeleton as the input at each time slot and introduce a novel regularization scheme to learn the co-occurrence features of skeleton joints. To train the deep LSTM network effectively, we propose a new dropout algorithm which simultaneously operates on the gates, cells, and output responses of the LSTM neurons. Experimental results on three human action recognition datasets consistently demonstrate the effectiveness of the proposed model.