Goto

Collaborating Authors

Li, Yaliang


A Unified Transferable Model for ML-Enhanced DBMS

arXiv.org Artificial Intelligence

Recently, the database management system (DBMS) community has witnessed the power of machine learning (ML) solutions for DBMS tasks. Despite their promising performance, these existing solutions can hardly be considered satisfactory. First, these ML-based methods in DBMS are not effective enough because they are optimized on each specific task, and cannot explore or understand the intrinsic connections between tasks. Second, the training process has serious limitations that hinder their practicality, because they need to retrain the entire model from scratch for a new DB. Moreover, for each retraining, they require an excessive amount of training data, which is very expensive to acquire and unavailable for a new DB. We propose to explore the transferabilities of the ML methods both across tasks and across DBs to tackle these fundamental drawbacks. In this paper, we propose a unified model MTMLF that uses a multi-task training procedure to capture the transferable knowledge across tasks and a pretrain finetune procedure to distill the transferable meta knowledge across DBs. We believe this paradigm is more suitable for cloud DB service, and has the potential to revolutionize the way how ML is used in DBMS. Furthermore, to demonstrate the predicting power and viability of MTMLF, we provide a concrete and very promising case study on query optimization tasks. Last but not least, we discuss several concrete research opportunities along this line of work.


A Pluggable Learned Index Method via Sampling and Gap Insertion

arXiv.org Artificial Intelligence

Database indexes facilitate data retrieval and benefit broad applications in real-world systems. Recently, a new family of index, named learned index, is proposed to learn hidden yet useful data distribution and incorporate such information into the learning of indexes, which leads to promising performance improvements. However, the "learning" process of learned indexes is still under-explored. In this paper, we propose a formal machine learning based framework to quantify the index learning objective, and study two general and pluggable techniques to enhance the learning efficiency and learning effectiveness for learned indexes. With the guidance of the formal learning objective, we can efficiently learn index by incorporating the proposed sampling technique, and learn precise index with enhanced generalization ability brought by the proposed result-driven gap insertion technique. We conduct extensive experiments on real-world datasets and compare several indexing methods from the perspective of the index learning objective. The results show the ability of the proposed framework to help to design suitable indexes for different scenarios. Further, we demonstrate the effectiveness of the proposed sampling technique, which achieves up to 78x construction speedup while maintaining non-degraded indexing performance. Finally, we show the gap insertion technique can enhance both the static and dynamic indexing performances of existing learned index methods with up to 1.59x query speedup. We will release our codes and processed data for further study, which can enable more exploration of learned indexes from both the perspectives of machine learning and database.


Interactive Feature Generation via Learning Adjacency Tensor of Feature Graph

arXiv.org Machine Learning

To automate the generation of interactive features, recent methods are proposed to either explicitly traverse the interactive feature space or implicitly express the interactions via intermediate activations of some designed models. These two kinds of methods show that there is essentially a trade-off between feature interpretability and efficient search. To possess both of their merits, we propose a novel method named Feature Interaction Via Edge Search (FIVES), which formulates the task of interactive feature generation as searching for edges on the defined feature graph. We first present our theoretical evidence that motivates us to search for interactive features in an inductive manner. Then we instantiate this search strategy by alternatively updating the edge structure and the predictive model of a graph neural network (GNN) associated with the defined feature graph. In this way, the proposed FIVES method traverses a trimmed search space and enables explicit feature generation according to the learned adjacency tensor of the GNN. Experimental results on both benchmark and real-world datasets demonstrate the advantages of FIVES over several state-of-the-art methods.


Simple and Deep Graph Convolutional Networks

arXiv.org Machine Learning

Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the {\em over-smoothing} problem. In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: {\em Initial residual} and {\em Identity mapping}. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi- and full-supervised tasks. Code is available at https://github.com/chennnM/GCNII .


Representation Learning for Treatment Effect Estimation from Observational Data

Neural Information Processing Systems

Estimating individual treatment effect (ITE) is a challenging problem in causal inference, due to the missing counterfactuals and the selection bias. Existing ITE estimation methods mainly focus on balancing the distributions of control and treated groups, but ignore the local similarity information that is helpful. In this paper, we propose a local similarity preserved individual treatment effect (SITE) estimation method based on deep representation learning. SITE preserves local similarity and balances data distributions simultaneously, by focusing on several hard samples in each mini-batch. Experimental results on synthetic and three real-world datasets demonstrate the advantages of the proposed SITE method, compared with the state-of-the-art ITE estimation methods.


A Survey on Causal Inference

arXiv.org Artificial Intelligence

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.


Automated Relational Meta-learning

arXiv.org Machine Learning

In order to efficiently learn with small amount of data on new tasks, meta-learning transfers knowledge learned from previous tasks to the new ones. However, a critical challenge in meta-learning is the task heterogeneity which cannot be well handled by traditional globally shared meta-learning methods. In addition, current task-specific meta-learning methods may either suffer from hand-crafted structure design or lack the capability to capture complex relations between tasks. In this paper, motivated by the way of knowledge organization in knowledge bases, we propose an automated relational meta-learning (ARML) framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph. When a new task arrives, it can quickly find the most relevant structure and tailor the learned structure knowledge to the meta-learner. As a result, the proposed framework not only addresses the challenge of task heterogeneity by a learned meta-knowledge graph, but also increases the model interpretability. We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.


Towards Data Poisoning Attack against Knowledge Graph Embedding

arXiv.org Artificial Intelligence

Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph.Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE' robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks.


SynonymNet: Multi-context Bilateral Matching for Entity Synonyms

arXiv.org Artificial Intelligence

Being able to automatically discover synonymous entities from a large free-text corpus has transformative effects on structured knowledge discovery. Existing works either require structured annotations, or fail to incorporate context information effectively, which lower the efficiency of information usage. In this paper, we propose a framework for synonym discovery from free-text corpus without structured annotation. As one of the key components in synonym discovery, we introduce a novel neural network model SynonymNet to determine whether or not two given entities are synonym with each other. Instead of using entities features, SynonymNet makes use of multiple pieces of contexts in which the entity is mentioned, and compares the context-level similarity via a bilateral matching schema to determine synonymity. Experimental results demonstrate that the proposed model achieves state-of-the-art results on both generic and domain-specific synonym datasets: Wiki+Freebase, PubMed+UMLS and MedBook+MKG, with up to 4.16% improvement in terms of Area Under the Curve (AUC) and 3.19% in terms of Mean Average Precision (MAP) compare to the best baseline method.


Representation Learning for Treatment Effect Estimation from Observational Data

Neural Information Processing Systems

Estimating individual treatment effect (ITE) is a challenging problem in causal inference, due to the missing counterfactuals and the selection bias. Existing ITE estimation methods mainly focus on balancing the distributions of control and treated groups, but ignore the local similarity information that provides meaningful constraints on the ITE estimation. In this paper, we propose a local similarity preserved individual treatment effect (SITE) estimation method based on deep representation learning. SITE preserves local similarity and balances data distributions simultaneously, by focusing on several hard samples in each mini-batch. Experimental results on synthetic and three real-world datasets demonstrate the advantages of the proposed SITE method, compared with the state-of-the-art ITE estimation methods.