Plotting

 Li, Xuan


Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models

arXiv.org Artificial Intelligence

Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a model that predicts the property they observe. We showcase this advantage by adapting our tool to a lightweight verifier that evaluates the correctness of reasoning paths. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.


Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning

arXiv.org Artificial Intelligence

Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements.


SemiDFL: A Semi-Supervised Paradigm for Decentralized Federated Learning

arXiv.org Artificial Intelligence

Decentralized federated learning (DFL) realizes cooperative model training among connected clients without relying on a central server, thereby mitigating communication bottlenecks and eliminating the single-point failure issue present in centralized federated learning (CFL). Most existing work on DFL focuses on supervised learning, assuming each client possesses sufficient labeled data for local training. However, in real-world applications, much of the data is unlabeled. We address this by considering a challenging yet practical semisupervised learning (SSL) scenario in DFL, where clients may have varying data sources: some with few labeled samples, some with purely unlabeled data, and others with both. In this work, we propose SemiDFL, the first semi-supervised DFL method that enhances DFL performance in SSL scenarios by establishing a consensus in both data and model spaces. Specifically, we utilize neighborhood information to improve the quality of pseudo-labeling, which is crucial for effectively leveraging unlabeled data. We then design a consensusbased diffusion model to generate synthesized data, which is used in combination with pseudo-labeled data to create mixed datasets. Additionally, we develop an adaptive aggregation method that leverages the model accuracy of synthesized data to further enhance SemiDFL performance. Through extensive experimentation, we demonstrate the remarkable performance superiority of the proposed DFL-Semi method over existing CFL and DFL schemes in both IID and non-IID SSL scenarios.


AI-Driven Health Monitoring of Distributed Computing Architecture: Insights from XGBoost and SHAP

arXiv.org Artificial Intelligence

With the rapid development of artificial intelligence technology, its application in the optimization of complex computer systems is becoming more and more extensive. Edge computing is an efficient distributed computing architecture, and the health status of its nodes directly affects the performance and reliability of the entire system. In view of the lack of accuracy and interpretability of traditional methods in node health status judgment, this paper proposes a health status judgment method based on XGBoost and combines the SHAP method to analyze the interpretability of the model. Through experiments, it is verified that XGBoost has superior performance in processing complex features and nonlinear data of edge computing nodes, especially in capturing the impact of key features (such as response time and power consumption) on node status. SHAP value analysis further reveals the global and local importance of features, so that the model not only has high precision discrimination ability but also can provide intuitive explanations, providing data support for system optimization. Research shows that the combination of AI technology and computer system optimization can not only realize the intelligent monitoring of the health status of edge computing nodes but also provide a scientific basis for dynamic optimization scheduling, resource management and anomaly detection. In the future, with the in-depth development of AI technology, model dynamics, cross-node collaborative optimization and multimodal data fusion will become the focus of research, providing important support for the intelligent evolution of edge computing systems.


Model Inversion Attacks: A Survey of Approaches and Countermeasures

arXiv.org Artificial Intelligence

The success of deep neural networks has driven numerous research studies and applications from Euclidean to non-Euclidean data. However, there are increasing concerns about privacy leakage, as these networks rely on processing private data. Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training by abusing access to a well-trained model. The effectiveness of MIAs has been demonstrated in various domains, including images, texts, and graphs. These attacks highlight the vulnerability of neural networks and raise awareness about the risk of privacy leakage within the research community. Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs across different domains. This survey aims to summarize up-to-date MIA methods in both attacks and defenses, highlighting their contributions and limitations, underlying modeling principles, optimization challenges, and future directions. We hope this survey bridges the gap in the literature and facilitates future research in this critical area. Besides, we are maintaining a repository to keep track of relevant research at https://github.com/AndrewZhou924/Awesome-model-inversion-attack.


Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments

arXiv.org Artificial Intelligence

This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning. In modern computing environments, characterized by increasing data volumes, task complexity, and dynamic workloads, traditional static scheduling methods such as Round-Robin and Priority Scheduling fail to meet the demands of efficient resource allocation and real-time adaptability. By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization. Through extensive experiments, the superiority of the proposed approach is demonstrated in both task completion time and resource utilization, outperforming traditional and dynamic resource allocation (DRA) algorithms. These findings are critical as they highlight the potential of intelligent scheduling algorithms based on reinforcement learning to address the growing complexity and unpredictability of computing environments. This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption. The broad applicability of this approach makes it a promising candidate for next-generation computing frameworks, such as edge computing, cloud computing, and the Internet of Things.


Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection

arXiv.org Artificial Intelligence

A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone to be averaged by normal neighbors, making the learned anomaly representations less distinguishable. To tackle this issue, we propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection -- which introduces a graph pointer neural network as the heterophilic node detector to identify potential anomalies whose neighborhoods are normal-node-dominant. For each identified potential anomaly, we design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones. At last, we involve these translated neighbors in GNN neighborhood aggregation to produce counterfactual representations of anomalies. Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance. The experimental results on four datasets demonstrate that CAGAD significantly outperforms strong baselines, with an average improvement of 2.35% on F1, 2.53% on AUC-ROC, and 2.79% on AUC-PR.


Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication

arXiv.org Artificial Intelligence

Existing diffusion-based text-to-3D generation methods primarily focus on producing visually realistic shapes and appearances, often neglecting the physical constraints necessary for downstream tasks. Generated models frequently fail to maintain balance when placed in physics-based simulations or 3D printed. This balance is crucial for satisfying user design intentions in interactive gaming, embodied AI, and robotics, where stable models are needed for reliable interaction. Additionally, stable models ensure that 3D-printed objects, such as figurines for home decoration, can stand on their own without requiring additional supports. To fill this gap, we introduce Atlas3D, an automatic and easy-to-implement method that enhances existing Score Distillation Sampling (SDS)-based text-to-3D tools. Atlas3D ensures the generation of self-supporting 3D models that adhere to physical laws of stability under gravity, contact, and friction. Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization, serving as either a refinement or a post-processing module for existing frameworks. We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.


Scenarios Engineering driven Autonomous Transportation in Open-Pit Mines

arXiv.org Artificial Intelligence

One critical bottleneck that impedes the development and deployment of autonomous transportation in open-pit mines is guaranteed robustness and trustworthiness in prohibitively extreme scenarios. In this research, a novel scenarios engineering (SE) methodology for the autonomous mining truck is proposed for open-pit mines. SE increases the trustworthiness and robustness of autonomous trucks from four key components: Scenario Feature Extractor, Intelligence & Index (I&I), Calibration & Certification (C&C), and Verification & Validation (V&V). Scenario feature extractor is a comprehensive pipeline approach that captures complex interactions and latent dependencies in complex mining scenarios. I&I effectively enhances the quality of the training dataset, thereby establishing a solid foundation for autonomous transportation in mining areas. C&C is grounded in the intrinsic regulation, capabilities, and contributions of the intelligent systems employed in autonomous transportation to align with traffic participants in the real world and ensure their performance through certification. V&V process ensures that the autonomous transportation system can be correctly implemented, while validation focuses on evaluating the ability of the well-trained model to operate efficiently in the complex and dynamic conditions of the open-pit mines. This methodology addresses the unique challenges of autonomous transportation in open-pit mining, promoting productivity, safety, and performance in mining operations.


Scenario Engineering for Autonomous Transportation: A New Stage in Open-Pit Mines

arXiv.org Artificial Intelligence

In recent years, open-pit mining has seen significant advancement, the cooperative operation of various specialized machinery substantially enhancing the efficiency of mineral extraction. However, the harsh environment and complex conditions in open-pit mines present substantial challenges for the implementation of autonomous transportation systems. This research introduces a novel paradigm that integrates Scenario Engineering (SE) with autonomous transportation systems to significantly improve the trustworthiness, robustness, and efficiency in open-pit mines by incorporating the four key components of SE, including Scenario Feature Extractor, Intelligence and Index (I&I), Calibration and Certification (C&C), and Verification and Validation (V&V). This paradigm has been validated in two famous open-pit mines, the experiment results demonstrate marked improvements in robustness, trustworthiness, and efficiency. By enhancing the capacity, scalability, and diversity of autonomous transportation, this paradigm fosters the integration of SE and parallel driving and finally propels the achievement of the '6S' objectives.