Goto

Collaborating Authors

 Li, Xiaopeng


Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective

arXiv.org Artificial Intelligence

Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems remains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior to quantify risk cognition and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian distribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms in highrisk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate, and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidimensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity, the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios. These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for enhancing AV-human interaction in real-world traffic environments. Introduction Driving safety is directly influenced by drivers' risk cognition and collision avoidance decisionmaking abilities in high-risk scenarios. In real-world driving, risk cognition generally involves complex interactions among multiple co-existing risk factors rather than being limited to a single risk source (Crosato et al., 2024; Huang et al., 2022).


Rethinking the Residual Distribution of Locate-then-Editing Methods in Model Editing

arXiv.org Artificial Intelligence

Model editing is a powerful technique for updating the knowledge of Large Language Models (LLMs). Locate-then-edit methods are a popular class of approaches that first identify the critical layers storing knowledge, then compute the residual of the last critical layer based on the edited knowledge, and finally perform multi-layer updates using a least-squares solution by evenly distributing the residual from the first critical layer to the last. Although these methods achieve promising results, they have been shown to degrade the original knowledge of LLMs. We argue that residual distribution leads to this issue. To explore this, we conduct a comprehensive analysis of residual distribution in locate-then-edit methods from both empirical and theoretical perspectives, revealing that residual distribution introduces editing errors, leading to inaccurate edits. To address this issue, we propose the Boundary Layer UpdatE (BLUE) strategy to enhance locate-then-edit methods. Sequential batch editing experiments on three LLMs and two datasets demonstrate that BLUE not only delivers an average performance improvement of 35.59\%, significantly advancing the state of the art in model editing, but also enhances the preservation of LLMs' general capabilities. Our code is available at https://github.com/xpq-tech/BLUE.


Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs

arXiv.org Artificial Intelligence

This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs' behavior when interacting with traffic lights and signs. This will facilitate research on AV integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.


QualityFlow: An Agentic Workflow for Program Synthesis Controlled by LLM Quality Checks

arXiv.org Artificial Intelligence

We introduce QualityFlow, a dynamic agentic workflow for program synthesis. Given the English description of a programming problem and a set of unit tests, the model's goal is to synthesize the correct program that solves the problem and passes the tests. QualityFlow consists of multiple large language model (LLM) agents that resemble a software development team, including code generation, testing, and self-debugging. Existing program synthesis methods face three major limitations: assumption of visible unit test conformity, bottleneck of synthesized test quality, and deviation of self-debugging trajectory. To address them, we propose the LLM Quality Checker, which explicitly "imagines" whether the synthesized programs' execution would conform to the unit tests. The Quality Checks dynamically control the workflow, including actions to submit the final answer, clarify the problem statement, and revert previous workflow steps. As a result, our Quality Checker can precisely accept any correct program, mitigate faulty synthesized tests, and prevent potential workflow deviation. The success of the Quality Checker further enables Diversified Prompting, which encourages variations in LLM responses to maximize the possibility that a correct program appears and passes the quality check. In experiments, QualityFlow establishes the state-of-the-art results on four program synthesis benchmarks: MBPP, HumanEval, and the stricter evaluations of both MBPP and HumanEval from EvalPlus. Our systematic analysis shows that the dynamic workflow controlled by LLM quality checks can outperform static workflows and single-attempt zero-shot synthesis. The Quality Checker is the center of our investigation, and we dissect its individual performance and integrated impact on the workflow accuracy, as well as other ablations experiments to justify our workflow design.


Assessing Markov Property in Driving Behaviors: Insights from Statistical Tests

arXiv.org Artificial Intelligence

The Markov property serves as a foundational assumption in most existing work on vehicle driving behavior, positing that future states depend solely on the current state, not the series of preceding states. This study validates the Markov properties of vehicle trajectories for both Autonomous Vehicles (AVs) and Human-driven Vehicles (HVs). A statistical method used to test whether time series data exhibits Markov properties is applied to examine whether the trajectory data possesses Markov characteristics. t test and F test are additionally introduced to characterize the differences in Markov properties between AVs and HVs. Based on two public trajectory datasets, we investigate the presence and order of the Markov property of different types of vehicles through rigorous statistical tests. Our findings reveal that AV trajectories generally exhibit stronger Markov properties compared to HV trajectories, with a higher percentage conforming to the Markov property and lower Markov orders. In contrast, HV trajectories display greater variability and heterogeneity in decision-making processes, reflecting the complex perception and information processing involved in human driving. These results have significant implications for the development of driving behavior models, AV controllers, and traffic simulation systems. Our study also demonstrates the feasibility of using statistical methods to test the presence of Markov properties in driving trajectory data.


SWSC: Shared Weight for Similar Channel in LLM

arXiv.org Artificial Intelligence

Large language models (LLMs) have spurred development in multiple industries. However, the growing number of their parameters brings substantial storage and computing burdens, making it essential to explore model compression techniques for parameter reduction and easier deployment. We propose SWSC, an LLM compression method based on the concept of Shared Weight for Similar Channel. It uses the K-Means clustering algorithm to cluster model weights channel-by-channel, generating clusters with highly similar vectors within each. A representative vector from each cluster is selected to approximately replace all vectors in the cluster, significantly reducing the number of model weight parameters. However, approximate restoration will inevitably cause damage to the performance of the model. To tackle this issue, we perform singular value decomposition on the weight error values before and after compression and retain the larger singular values and their corresponding singular vectors to compensate for the accuracy. The experimental results show that our method can effectively ensure the performance of the compressed LLM even under low-precision conditions.


TAPO: Task-Referenced Adaptation for Prompt Optimization

arXiv.org Artificial Intelligence

Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.


Online Adaptive Platoon Control for Connected and Automated Vehicles via Physics Enhanced Residual Learning

arXiv.org Artificial Intelligence

Li) Abstract This paper introduces a physics enhanced residual learning (PERL) framework for connected and automated vehicle (CAV) platoon control, addressing the dynamics and unpredictability inherent to platoon systems. The framework first develops a physics-based controller to model vehicle dynamics, using driving speed as input to optimize safety and efficiency. Then the residual controller, based on neural network (NN) learning, enriches the prior knowledge of the physical model and corrects residuals caused by vehicle dynamics. By integrating the physical model with data-driven online learning, the PERL framework retains the interpretability and transparency of physics-based models and enhances the adaptability and precision of data-driven learning, achieving significant improvements in computational efficiency and control accuracy in dynamic scenarios. Simulation and robot car platform tests demonstrate that PERL significantly outperforms pure physical and learning models, reducing average cumulative absolute position and speed errors by up to 58.5% and 40.1% (physical model) and 58.4% and 47.7% (NN model). The reduced-scale robot car platform tests further validate the adaptive PERL framework's superior accuracy and rapid convergence under dynamic disturbances, reducing position and speed cumulative errors by 72.73% and 99.05% (physical model) and 64.71% and 72.58% (NN model). PERL enhances platoon control performance through online parameter updates when external disturbances are detected. Results demonstrate the advanced framework's exceptional accuracy and rapid convergence capabilities, proving its effectiveness in maintaining platoon stability under diverse conditions. Introduction Connected and automated vehicle (CAV) platoon represents a significant advancement in intelligent transportation systems through advanced cooperative control algorithms, offering prospects for enhancing road capacity and improving traffic safety (Z.


LSAQ: Layer-Specific Adaptive Quantization for Large Language Model Deployment

arXiv.org Artificial Intelligence

As large language models (LLMs) demonstrate exceptional performance across various domains, the deployment of these models on edge devices has emerged as a new trend. Quantization techniques, which reduce the size and memory footprint of LLMs, are effective for enabling deployment on resource-constrained edge devices. However, existing one-size-fits-all quantization methods often fail to dynamically adjust the memory consumption of LLMs based on specific hardware characteristics and usage scenarios. To address this limitation, we propose LSAQ (Layer-Specific Adaptive Quantization), a system for adaptive quantization and dynamic deployment of LLMs based on layer importance. LSAQ evaluates layer importance by constructing top-k token sets from the inputs and outputs of each layer and calculating their Jaccard coefficient. Using this evaluation, the system adaptively adjusts quantization strategies in real time according to the resource availability of edge devices, assigning different precision levels to layers of varying importance. This approach significantly reduces the storage requirements of LLMs while maintaining model performance, enabling efficient deployment across diverse hardware platforms and usage scenarios.


AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving

arXiv.org Artificial Intelligence

Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. Our benchmark is publicly available at \url{https://github.com/taco-group/AutoTrust}, and the leaderboard is released at \url{https://taco-group.github.io/AutoTrust/}.