Goto

Collaborating Authors

 Li, Wenbin


Adaptive Teaming in Multi-Drone Pursuit: Simulation, Training, and Deployment

arXiv.org Artificial Intelligence

Adaptive teaming, the ability to collaborate with unseen teammates without prior coordination, remains an underexplored challenge in multi-robot collaboration. This paper focuses on adaptive teaming in multi-drone cooperative pursuit, a critical task with real-world applications such as border surveillance, search-and-rescue, and counter-terrorism. We first define and formalize the \textbf{A}daptive Teaming in \textbf{M}ulti-\textbf{D}rone \textbf{P}ursuit (AT-MDP) problem and introduce AT-MDP framework, a comprehensive framework that integrates simulation, algorithm training and real-world deployment. AT-MDP framework provides a flexible experiment configurator and interface for simulation, a distributed training framework with an extensive algorithm zoo (including two newly proposed baseline methods) and an unseen drone zoo for evaluating adaptive teaming, as well as a real-world deployment system that utilizes edge computing and Crazyflie drones. To the best of our knowledge, AT-MDP framework is the first adaptive framework for continuous-action decision-making in complex real-world drone tasks, enabling multiple drones to coordinate effectively with unseen teammates. Extensive experiments in four multi-drone pursuit environments of increasing difficulty confirm the effectiveness of AT-MDP framework, while real-world deployments further validate its feasibility in physical systems. Videos and code are available at https://sites.google.com/view/at-mdp.


CausalTAD: Causal Implicit Generative Model for Debiased Online Trajectory Anomaly Detection

arXiv.org Artificial Intelligence

Trajectory anomaly detection, aiming to estimate the anomaly risk of trajectories given the Source-Destination (SD) pairs, has become a critical problem for many real-world applications. Existing solutions directly train a generative model for observed trajectories and calculate the conditional generative probability $P({T}|{C})$ as the anomaly risk, where ${T}$ and ${C}$ represent the trajectory and SD pair respectively. However, we argue that the observed trajectories are confounded by road network preference which is a common cause of both SD distribution and trajectories. Existing methods ignore this issue limiting their generalization ability on out-of-distribution trajectories. In this paper, we define the debiased trajectory anomaly detection problem and propose a causal implicit generative model, namely CausalTAD, to solve it. CausalTAD adopts do-calculus to eliminate the confounding bias of road network preference and estimates $P({T}|do({C}))$ as the anomaly criterion. Extensive experiments show that CausalTAD can not only achieve superior performance on trained trajectories but also generally improve the performance of out-of-distribution data, with improvements of $2.1\% \sim 5.7\%$ and $10.6\% \sim 32.7\%$ respectively.


Effective and Efficient Representation Learning for Flight Trajectories

arXiv.org Artificial Intelligence

Flight trajectory data plays a vital role in the traffic management community, especially for downstream tasks such as trajectory prediction, flight recognition, and anomaly detection. Existing works often utilize handcrafted features and design models for different tasks individually, which heavily rely on domain expertise and are hard to extend. We argue that different flight analysis tasks share the same useful features of the trajectory. Jointly learning a unified representation for flight trajectories could be beneficial for improving the performance of various tasks. However, flight trajectory representation learning (TRL) faces two primary challenges, \ie unbalanced behavior density and 3D spatial continuity, which disable recent general TRL methods. In this paper, we propose Flight2Vec , a flight-specific representation learning method to address these challenges. Specifically, a behavior-adaptive patching mechanism is used to inspire the learned representation to pay more attention to behavior-dense segments. Moreover, we introduce a motion trend learning technique that guides the model to memorize not only the precise locations, but also the motion trend to generate better representations. Extensive experimental results demonstrate that Flight2Vec significantly improves performance in downstream tasks such as flight trajectory prediction, flight recognition, and anomaly detection.


Uni-Mlip: Unified Self-supervision for Medical Vision Language Pre-training

arXiv.org Artificial Intelligence

Vision-and-Language Pre-training (VLP) techniques, such as the Contrastive Language Image Pre-training (CLIP) model [35], have set a foundational approach for leveraging selfsupervision with language guidance to integrate visual and textual data effectively. By aligning image and text representations through contrastive learning, CLIP improves the model's ability to interpret complex data by linking visual concepts to linguistic descriptions. This method significantly enhances the understanding of multimodal representations by pre-training on extensive datasets and subsequently fine-tuning on targeted downstream tasks. This paradigm shift is particularly vital in the medical domain, where the acquisition of multimodal medical data presents significant challenges due to concerns over data privacy, sensitivity, and the complex, domain-specific knowledge required for annotation. Medical Vision-and-Language Pre-training (Med-VLP) aims to address such challenges inherent to the medical imaging field.


PORCA: Root Cause Analysis with Partially Observed Data

arXiv.org Artificial Intelligence

Root Cause Analysis (RCA) aims at identifying the underlying causes of system faults by uncovering and analyzing the causal structure from complex systems. It has been widely used in many application domains. Reliable diagnostic conclusions are of great importance in mitigating system failures and financial losses. However, previous studies implicitly assume a full observation of the system, which neglect the effect of partial observation (i.e., missing nodes and latent malfunction). As a result, they fail in deriving reliable RCA results. In this paper, we unveil the issues of unobserved confounders and heterogeneity in partial observation and come up with a new problem of root cause analysis with partially observed data. To achieve this, we propose PORCA, a novel RCA framework which can explore reliable root causes under both unobserved confounders and unobserved heterogeneity. PORCA leverages magnified score-based causal discovery to efficiently optimize acyclic directed mixed graph under unobserved confounders. In addition, we also develop a heterogeneity-aware scheduling strategy to provide adaptive sample weights. Extensive experimental results on one synthetic and two real-world datasets demonstrate the effectiveness and superiority of the proposed framework.


AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

arXiv.org Artificial Intelligence

Detecting anomaly edges for dynamic graphs aims to identify edges significantly deviating from the normal pattern and can be applied in various domains, such as cybersecurity, financial transactions and AIOps. With the evolving of time, the types of anomaly edges are emerging and the labeled anomaly samples are few for each type. Current methods are either designed to detect randomly inserted edges or require sufficient labeled data for model training, which harms their applicability for real-world applications. In this paper, we study this problem by cooperating with the rich knowledge encoded in large language models(LLMs) and propose a method, namely AnomalyLLM. To align the dynamic graph with LLMs, AnomalyLLM pre-trains a dynamic-aware encoder to generate the representations of edges and reprograms the edges using the prototypes of word embeddings. Along with the encoder, we design an in-context learning framework that integrates the information of a few labeled samples to achieve few-shot anomaly detection. Experiments on four datasets reveal that AnomalyLLM can not only significantly improve the performance of few-shot anomaly detection, but also achieve superior results on new anomalies without any update of model parameters.


IPixMatch: Boost Semi-supervised Semantic Segmentation with Inter-Pixel Relation

arXiv.org Artificial Intelligence

The scarcity of labeled data in real-world scenarios is a critical bottleneck of deep learning's effectiveness. Semi-supervised semantic segmentation has been a typical solution to achieve a desirable tradeoff between annotation cost and segmentation performance. However, previous approaches, whether based on consistency regularization or self-training, tend to neglect the contextual knowledge embedded within inter-pixel relations. This negligence leads to suboptimal performance and limited generalization. In this paper, we propose a novel approach IPixMatch designed to mine the neglected but valuable Inter-Pixel information for semi-supervised learning. Specifically, IPixMatch is constructed as an extension of the standard teacher-student network, incorporating additional loss terms to capture inter-pixel relations. It shines in low-data regimes by efficiently leveraging the limited labeled data and extracting maximum utility from the available unlabeled data. Furthermore, IPixMatch can be integrated seamlessly into most teacher-student frameworks without the need of model modification or adding additional components. Our straightforward IPixMatch method demonstrates consistent performance improvements across various benchmark datasets under different partitioning protocols.


Continual Offline Reinforcement Learning via Diffusion-based Dual Generative Replay

arXiv.org Artificial Intelligence

We study continual offline reinforcement learning, a practical paradigm that facilitates forward transfer and mitigates catastrophic forgetting to tackle sequential offline tasks. We propose a dual generative replay framework that retains previous knowledge by concurrent replay of generated pseudo-data. First, we decouple the continual learning policy into a diffusion-based generative behavior model and a multi-head action evaluation model, allowing the policy to inherit distributional expressivity for encompassing a progressive range of diverse behaviors. Second, we train a task-conditioned diffusion model to mimic state distributions of past tasks. Generated states are paired with corresponding responses from the behavior generator to represent old tasks with high-fidelity replayed samples. Finally, by interleaving pseudo samples with real ones of the new task, we continually update the state and behavior generators to model progressively diverse behaviors, and regularize the multi-head critic via behavior cloning to mitigate forgetting. Experiments demonstrate that our method achieves better forward transfer with less forgetting, and closely approximates the results of using previous ground-truth data due to its high-fidelity replay of the sample space. Our code is available at \href{https://github.com/NJU-RL/CuGRO}{https://github.com/NJU-RL/CuGRO}.


ONNXPruner: ONNX-Based General Model Pruning Adapter

arXiv.org Artificial Intelligence

Recent advancements in model pruning have focused on developing new algorithms and improving upon benchmarks. However, the practical application of these algorithms across various models and platforms remains a significant challenge. To address this challenge, we propose ONNXPruner, a versatile pruning adapter designed for the ONNX format models. ONNXPruner streamlines the adaptation process across diverse deep learning frameworks and hardware platforms. A novel aspect of ONNXPruner is its use of node association trees, which automatically adapt to various model architectures. These trees clarify the structural relationships between nodes, guiding the pruning process, particularly highlighting the impact on interconnected nodes. Furthermore, we introduce a tree-level evaluation method. By leveraging node association trees, this method allows for a comprehensive analysis beyond traditional single-node evaluations, enhancing pruning performance without the need for extra operations. Experiments across multiple models and datasets confirm ONNXPruner's strong adaptability and increased efficacy. Our work aims to advance the practical application of model pruning.


Identifying Optimal Launch Sites of High-Altitude Latex-Balloons using Bayesian Optimisation for the Task of Station-Keeping

arXiv.org Artificial Intelligence

Station-keeping tasks for high-altitude balloons show promise in areas such as ecological surveys, atmospheric analysis, and communication relays. However, identifying the optimal time and position to launch a latex high-altitude balloon is still a challenging and multifaceted problem. For example, tasks such as forest fire tracking place geometric constraints on the launch location of the balloon. Furthermore, identifying the most optimal location also heavily depends on atmospheric conditions. We first illustrate how reinforcement learning-based controllers, frequently used for station-keeping tasks, can exploit the environment. This exploitation can degrade performance on unseen weather patterns and affect station-keeping performance when identifying an optimal launch configuration. Valuing all states equally in the region, the agent exploits the region's geometry by flying near the edge, leading to risky behaviours. We propose a modification which compensates for this exploitation and finds this leads to, on average, higher steps within the target region on unseen data. Then, we illustrate how Bayesian Optimisation (BO) can identify the optimal launch location to perform station-keeping tasks, maximising the expected undiscounted return from a given rollout. We show BO can find this launch location in fewer steps compared to other optimisation methods. Results indicate that, surprisingly, the most optimal location to launch from is not commonly within the target region. Please find further information about our project at https://sites.google.com/view/bo-lauch-balloon/.