Li, Qiongxiu
Byzantine-Resilient Federated Learning via Distributed Optimization
Xia, Yufei, Yu, Wenrui, Li, Qiongxiu
Byzantine attacks present a critical challenge to Federated Learning (FL), where malicious participants can disrupt the training process, degrade model accuracy, and compromise system reliability. Traditional FL frameworks typically rely on aggregation-based protocols for model updates, leaving them vulnerable to sophisticated adversarial strategies. In this paper, we demonstrate that distributed optimization offers a principled and robust alternative to aggregation-centric methods. Specifically, we show that the Primal-Dual Method of Multipliers (PDMM) inherently mitigates Byzantine impacts by leveraging its fault-tolerant consensus mechanism. Through extensive experiments on three datasets (MNIST, FashionMNIST, and Olivetti), under various attack scenarios including bit-flipping and Gaussian noise injection, we validate the superior resilience of distributed optimization protocols. Compared to traditional aggregation-centric approaches, PDMM achieves higher model utility, faster convergence, and improved stability. Our results highlight the effectiveness of distributed optimization in defending against Byzantine threats, paving the way for more secure and resilient federated learning systems.
From Centralized to Decentralized Federated Learning: Theoretical Insights, Privacy Preservation, and Robustness Challenges
Li, Qiongxiu, Yu, Wenrui, Xia, Yufei, Pang, Jun
Federated Learning (FL) enables collaborative learning without directly sharing individual's raw data. FL can be implemented in either a centralized (server-based) or decentralized (peer-to-peer) manner. In this survey, we present a novel perspective: the fundamental difference between centralized FL (CFL) and decentralized FL (DFL) is not merely the network topology, but the underlying training protocol: separate aggregation vs. joint optimization. We argue that this distinction in protocol leads to significant differences in model utility, privacy preservation, and robustness to attacks. We systematically review and categorize existing works in both CFL and DFL according to the type of protocol they employ. This taxonomy provides deeper insights into prior research and clarifies how various approaches relate or differ. Through our analysis, we identify key gaps in the literature. In particular, we observe a surprising lack of exploration of DFL approaches based on distributed optimization methods, despite their potential advantages. We highlight this under-explored direction and call for more research on leveraging distributed optimization for federated learning. Overall, this work offers a comprehensive overview from centralized to decentralized FL, sheds new light on the core distinctions between approaches, and outlines open challenges and future directions for the field.
Trustworthy Machine Learning via Memorization and the Granular Long-Tail: A Survey on Interactions, Tradeoffs, and Beyond
Li, Qiongxiu, Luo, Xiaoyu, Chen, Yiyi, Bjerva, Johannes
The role of memorization in machine learning (ML) has garnered significant attention, particularly as modern models are empirically observed to memorize fragments of training data. Previous theoretical analyses, such as Feldman's seminal work, attribute memorization to the prevalence of long-tail distributions in training data, proving it unavoidable for samples that lie in the tail of the distribution. However, the intersection of memorization and trustworthy ML research reveals critical gaps. While prior research in memorization in trustworthy ML has solely focused on class imbalance, recent work starts to differentiate class-level rarity from atypical samples, which are valid and rare intra-class instances. However, a critical research gap remains: current frameworks conflate atypical samples with noisy and erroneous data, neglecting their divergent impacts on fairness, robustness, and privacy. In this work, we conduct a thorough survey of existing research and their findings on trustworthy ML and the role of memorization. More and beyond, we identify and highlight uncharted gaps and propose new revenues in this research direction. Since existing theoretical and empirical analyses lack the nuances to disentangle memorization's duality as both a necessity and a liability, we formalize three-level long-tail granularity - class imbalance, atypicality, and noise - to reveal how current frameworks misapply these levels, perpetuating flawed solutions. By systematizing this granularity, we draw a roadmap for future research. Trustworthy ML must reconcile the nuanced trade-offs between memorizing atypicality for fairness assurance and suppressing noise for robustness and privacy guarantee. Redefining memorization via this granularity reshapes the theoretical foundation for trustworthy ML, and further affords an empirical prerequisite for models that align performance with societal trust.
DeMem: Privacy-Enhanced Robust Adversarial Learning via De-Memorization
Luo, Xiaoyu, Li, Qiongxiu
Adversarial robustness, the ability of a model to withstand manipulated inputs that cause errors, is essential for ensuring the trustworthiness of machine learning models in real-world applications. However, previous studies have shown that enhancing adversarial robustness through adversarial training increases vulnerability to privacy attacks. While differential privacy can mitigate these attacks, it often compromises robustness against both natural and adversarial samples. Our analysis reveals that differential privacy disproportionately impacts low-risk samples, causing an unintended performance drop. To address this, we propose DeMem, which selectively targets high-risk samples, achieving a better balance between privacy protection and model robustness. DeMem is versatile and can be seamlessly integrated into various adversarial training techniques. Extensive evaluations across multiple training methods and datasets demonstrate that DeMem significantly reduces privacy leakage while maintaining robustness against both natural and adversarial samples. These results confirm DeMem's effectiveness and broad applicability in enhancing privacy without compromising robustness.
Faster-GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models
Li, Xiao, Li, Zhuhong, Li, Qiongxiu, Lee, Bingze, Cui, Jinghao, Hu, Xiaolin
Aligned Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, LLMs remain susceptible to jailbreak adversarial attacks, where adversaries manipulate prompts to elicit malicious responses that aligned LLMs should have avoided. Identifying these vulnerabilities is crucial for understanding the inherent weaknesses of LLMs and preventing their potential misuse. One pioneering work in jailbreaking is the GCG attack, a discrete token optimization algorithm that seeks to find a suffix capable of jailbreaking aligned LLMs. Despite the success of GCG, we find it suboptimal, requiring significantly large computational costs, and the achieved jailbreaking performance is limited. In this work, we propose Faster-GCG, an efficient adversarial jailbreak method by delving deep into the design of GCG. Experiments demonstrate that Faster-GCG can surpass the original GCG with only 1/10 of the computational cost, achieving significantly higher attack success rates on various open-source aligned LLMs. In addition, We demonstrate that Faster-GCG exhibits improved attack transferability when testing on closed-sourced LLMs such as ChatGPT.
Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis
Chen, Yiyi, Li, Qiongxiu, Biswas, Russa, Bjerva, Johannes
Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language. This phenomenon presents a critical challenge in text generation by LLMs, often appearing as erratic and unpredictable behavior. We hypothesize that there are linguistic regularities to this inherent vulnerability in LLMs and shed light on patterns of language confusion across LLMs. We introduce a novel metric, Language Confusion Entropy, designed to directly measure and quantify this confusion, based on language distributions informed by linguistic typology and lexical variation. Comprehensive comparisons with the Language Confusion Benchmark (Marchisio et al., 2024) confirm the effectiveness of our metric, revealing patterns of language confusion across LLMs. We further link language confusion to LLM security, and find patterns in the case of multilingual embedding inversion attacks. Our analysis demonstrates that linguistic typology offers theoretically grounded interpretation, and valuable insights into leveraging language similarities as a prior for LLM alignment and security.
Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
Yu, Wenrui, Li, Qiongxiu, Lopuhaรค-Zwakenberg, Milan, Christensen, Mads Grรฆsbรธll, Heusdens, Richard
Federated learning (FL) emerged as a paradigm designed to improve data privacy by enabling data to reside at its source, thus embedding privacy as a core consideration in FL architectures, whether centralized or decentralized. Contrasting with recent findings by Pasquini et al., which suggest that decentralized FL does not empirically offer any additional privacy or security benefits over centralized models, our study provides compelling evidence to the contrary. We demonstrate that decentralized FL, when deploying distributed optimization, provides enhanced privacy protection - both theoretically and empirically - compared to centralized approaches. The challenge of quantifying privacy loss through iterative processes has traditionally constrained the theoretical exploration of FL protocols. We overcome this by conducting a pioneering in-depth information-theoretical privacy analysis for both frameworks. Our analysis, considering both eavesdropping and passive adversary models, successfully establishes bounds on privacy leakage. We show information theoretically that the privacy loss in decentralized FL is upper bounded by the loss in centralized FL. Compared to the centralized case where local gradients of individual participants are directly revealed, a key distinction of optimization-based decentralized FL is that the relevant information includes differences of local gradients over successive iterations and the aggregated sum of different nodes' gradients over the network. This information complicates the adversary's attempt to infer private data. To bridge our theoretical insights with practical applications, we present detailed case studies involving logistic regression and deep neural networks. These examples demonstrate that while privacy leakage remains comparable in simpler models, complex models like deep neural networks exhibit lower privacy risks under decentralized FL.
On the Privacy Effect of Data Enhancement via the Lens of Memorization
Li, Xiao, Li, Qiongxiu, Hu, Zhanhao, Hu, Xiaolin
Machine learning poses severe privacy concerns as it has been shown that the learned models can reveal sensitive information about their training data. Many works have investigated the effect of widely-adopted data augmentation (DA) and adversarial training (AT) techniques, termed data enhancement in the paper, on the privacy leakage of machine learning models. Such privacy effects are often measured by membership inference attacks (MIAs), which aim to identify whether a particular example belongs to the training set or not. We propose to investigate privacy from a new perspective called memorization. Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks as members compared to samples with low privacy risks. To solve this problem, we deploy a recent attack that can capture individual samples' memorization degrees for evaluation. Through extensive experiments, we unveil non-trivial findings about the connections between three essential properties of machine learning models, including privacy, generalization gap, and adversarial robustness. We demonstrate that, unlike existing results, the generalization gap is shown not highly correlated with privacy leakage. Moreover, stronger adversarial robustness does not necessarily imply that the model is more susceptible to privacy attacks.