Li, Qing
SAUCE: Selective Concept Unlearning in Vision-Language Models with Sparse Autoencoders
Li, Qing, Geng, Jiahui, Zhu, Derui, Cai, Fengyu, Lyu, Chenyang, Karray, Fakhri
Unlearning methods for vision-language models (VLMs) have primarily adapted techniques from large language models (LLMs), relying on weight updates that demand extensive annotated forget sets. Moreover, these methods perform unlearning at a coarse granularity, often leading to excessive forgetting and reduced model utility. To address this issue, we introduce SAUCE, a novel method that leverages sparse autoencoders (SAEs) for fine-grained and selective concept unlearning in VLMs. Briefly, SAUCE first trains SAEs to capture high-dimensional, semantically rich sparse features. It then identifies the features most relevant to the target concept for unlearning. During inference, it selectively modifies these features to suppress specific concepts while preserving unrelated information. We evaluate SAUCE on two distinct VLMs, LLaVA-v1.5-7B and LLaMA-3.2-11B-Vision-Instruct, across two types of tasks: concrete concept unlearning (objects and sports scenes) and abstract concept unlearning (emotions, colors, and materials), encompassing a total of 60 concepts. Extensive experiments demonstrate that SAUCE outperforms state-of-the-art methods by 18.04% in unlearning quality while maintaining comparable model utility. Furthermore, we investigate SAUCE's robustness against widely used adversarial attacks, its transferability across models, and its scalability in handling multiple simultaneous unlearning requests. Our findings establish SAUCE as an effective and scalable solution for selective concept unlearning in VLMs.
Towards Next-Generation Recommender Systems: A Benchmark for Personalized Recommendation Assistant with LLMs
Huang, Jiani, Wang, Shijie, Ning, Liang-bo, Fan, Wenqi, Wang, Shuaiqiang, Yin, Dawei, Li, Qing
Recommender systems (RecSys) are widely used across various modern digital platforms and have garnered significant attention. Traditional recommender systems usually focus only on fixed and simple recommendation scenarios, making it difficult to generalize to new and unseen recommendation tasks in an interactive paradigm. Recently, the advancement of large language models (LLMs) has revolutionized the foundational architecture of RecSys, driving their evolution into more intelligent and interactive personalized recommendation assistants. However, most existing studies rely on fixed task-specific prompt templates to generate recommendations and evaluate the performance of personalized assistants, which limits the comprehensive assessments of their capabilities. This is because commonly used datasets lack high-quality textual user queries that reflect real-world recommendation scenarios, making them unsuitable for evaluating LLM-based personalized recommendation assistants. To address this gap, we introduce RecBench+, a new dataset benchmark designed to access LLMs' ability to handle intricate user recommendation needs in the era of LLMs. RecBench+ encompasses a diverse set of queries that span both hard conditions and soft preferences, with varying difficulty levels. We evaluated commonly used LLMs on RecBench+ and uncovered below findings: 1) LLMs demonstrate preliminary abilities to act as recommendation assistants, 2) LLMs are better at handling queries with explicitly stated conditions, while facing challenges with queries that require reasoning or contain misleading information. Our dataset has been released at https://github.com/jiani-huang/RecBench.git.
Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification
Di, Kexin, Li, Xiuxing, Han, Yuyang, Li, Ziyu, Li, Qing, Wu, Xia
Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.
HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning
Jiang, Zhuohang, Wu, Pangjing, Liang, Ziran, Chen, Peter Q., Yuan, Xu, Jia, Ye, Tu, Jiancheng, Li, Chen, Ng, Peter H. F., Li, Qing
Structure reasoning is a fundamental capability of large language models (LLMs), enabling them to reason about structured commonsense and answer multi-hop questions. However, existing benchmarks for structure reasoning mainly focus on horizontal and coordinate structures (\emph{e.g.} graphs), overlooking the hierarchical relationships within them. Hierarchical structure reasoning is crucial for human cognition, particularly in memory organization and problem-solving. It also plays a key role in various real-world tasks, such as information extraction and decision-making. To address this gap, we propose HiBench, the first framework spanning from initial structure generation to final proficiency assessment, designed to benchmark the hierarchical reasoning capabilities of LLMs systematically. HiBench encompasses six representative scenarios, covering both fundamental and practical aspects, and consists of 30 tasks with varying hierarchical complexity, totaling 39,519 queries. To evaluate LLMs comprehensively, we develop five capability dimensions that depict different facets of hierarchical structure understanding. Through extensive evaluation of 20 LLMs from 10 model families, we reveal key insights into their capabilities and limitations: 1) existing LLMs show proficiency in basic hierarchical reasoning tasks; 2) they still struggle with more complex structures and implicit hierarchical representations, especially in structural modification and textual reasoning. Based on these findings, we create a small yet well-designed instruction dataset, which enhances LLMs' performance on HiBench by an average of 88.84\% (Llama-3.1-8B) and 31.38\% (Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit are available here, https://github.com/jzzzzh/HiBench, to encourage evaluation.
MMKE-Bench: A Multimodal Editing Benchmark for Diverse Visual Knowledge
Du, Yuntao, Jiang, Kailin, Gao, Zhi, Shi, Chenrui, Zheng, Zilong, Qi, Siyuan, Li, Qing
Knowledge editing techniques have emerged as essential tools for updating the factual knowledge of large language models (LLMs) and multimodal models (LMMs), allowing them to correct outdated or inaccurate information without retraining from scratch. However, existing benchmarks for multimodal knowledge editing primarily focus on entity-level knowledge represented as simple triplets, which fail to capture the complexity of real-world multimodal information. To address this issue, we introduce MMKE-Bench, a comprehensive MultiModal Knowledge Editing Benchmark, designed to evaluate the ability of LMMs to edit diverse visual knowledge in real-world scenarios. MMKE-Bench addresses these limitations by incorporating three types of editing tasks: visual entity editing, visual semantic editing, and user-specific editing. Besides, MMKE-Bench uses free-form natural language to represent and edit knowledge, offering a more flexible and effective format. The benchmark consists of 2,940 pieces of knowledge and 8,363 images across 33 broad categories, with evaluation questions automatically generated and human-verified. We assess five state-of-the-art knowledge editing methods on three prominent LMMs, revealing that no method excels across all criteria, and that visual and user-specific edits are particularly challenging. MMKE-Bench sets a new standard for evaluating the robustness of multimodal knowledge editing techniques, driving progress in this rapidly evolving field.
Fast Visuomotor Policies via Partial Denoising
Chen, Haojun, Liu, Minghao, Ma, Xiaojian, Ma, Zailin, Wu, Huimin, Ma, Chengdong, Chen, Yuanpei, Zhong, Yifan, Wang, Mingzhi, Li, Qing, Yang, Yaodong
Diffusion policies are widely adopted in complex visuomotor tasks for their ability to capture multimodal action distributions. However, the multiple sampling steps required for action generation significantly harm real-time inference efficiency, which limits their applicability in long-horizon tasks and real-time decision-making scenarios. Existing acceleration techniques reduce sampling steps by approximating the original denoising process but inevitably introduce unacceptable performance loss. Here we propose Falcon, which mitigates this trade-off and achieves further acceleration. The core insight is that visuomotor tasks exhibit sequential dependencies between actions at consecutive time steps. Falcon leverages this property to avoid denoising from a standard normal distribution at each decision step. Instead, it starts denoising from partial denoised actions derived from historical information to significantly reduce the denoising steps while incorporating current observations to achieve performance-preserving acceleration of action generation. Importantly, Falcon is a training-free algorithm that can be applied as a plug-in to further improve decision efficiency on top of existing acceleration techniques. We validated Falcon in 46 simulated environments, demonstrating a 2-7x speedup with negligible performance degradation, offering a promising direction for efficient visuomotor policy design.
HyperG: Hypergraph-Enhanced LLMs for Structured Knowledge
Huang, Sirui, Li, Hanqian, Gu, Yanggan, Hu, Xuming, Li, Qing, Xu, Guandong
Given that substantial amounts of domain-specific knowledge are stored in structured formats, such as web data organized through HTML, Large Language Models (LLMs) are expected to fully comprehend this structured information to broaden their applications in various real-world downstream tasks. Current approaches for applying LLMs to structured data fall into two main categories: serialization-based and operation-based methods. Both approaches, whether relying on serialization or using SQL-like operations as an intermediary, encounter difficulties in fully capturing structural relationships and effectively handling sparse data. To address these unique characteristics of structured data, we propose HyperG, a hypergraph-based generation framework aimed at enhancing LLMs' ability to process structured knowledge. Specifically, HyperG first augment sparse data with contextual information, leveraging the generative power of LLMs, and incorporate a prompt-attentive hypergraph learning (PHL) network to encode both the augmented information and the intricate structural relationships within the data. To validate the effectiveness and generalization of HyperG, we conduct extensive experiments across two different downstream tasks requiring structured knowledge.
Contrastive Learning Augmented Social Recommendations
Wang, Lin, Wang, Weisong, Xiao, Xuanji, Li, Qing
Recommender systems play a pivotal role in modern content platforms, yet traditional behavior-based models often face challenges in addressing cold users with sparse interaction data. Engaging these users, however, remains critical for sustaining platform growth. To tackle this issue, we propose leveraging reconstructed social graph to complement interest representations derived from behavioral data. Despite the widespread availability of social graphs on content platforms, their utility is hindered by social-relation noise and inconsistencies between social and behavioral interests. To mitigate noise propagation in graph data and extract reliable social interests, we introduce a dual-view denoising framework. This approach first applies low-rank singular value decomposition (SVD) to the user-item interaction matrix, generating denoised user embeddings for reconstructing the social graph. It then employs contrastive learning to align the original and reconstructed social graphs. To address the discrepancy between social and behavioral interests, we utilize a mutual distillation mechanism that decomposes interests into four subcategories: aligned social/behavioral interests and social/behavioral-specific interests, enabling effective integration of the two. Empirical results demonstrate the efficacy of our method, particularly in improving recommendations for cold users, by combining social and behavioral data. The implementation of our approach is publicly available at https://github.com/WANGLin0126/CLSRec.
FedOC: Optimizing Global Prototypes with Orthogonality Constraints for Enhancing Embeddings Separation in Heterogeneous Federated Learning
Guo, Fucheng, Luan, Zeyu, Li, Qing, Zhao, Dan, Jiang, Yong
Federated Learning (FL) has emerged as an essential framework for distributed machine learning, especially with its potential for privacy-preserving data processing. However, existing FL frameworks struggle to address statistical and model heterogeneity, which severely impacts model performance. While Heterogeneous Federated Learning (HtFL) introduces prototype-based strategies to address the challenges, current approaches face limitations in achieving optimal separation of prototypes. This paper presents FedOC, a novel HtFL algorithm designed to improve global prototype separation through orthogonality constraints, which not only increase intra-class prototype similarity but also significantly expand the inter-class angular separation. With the guidance of the global prototype, each client keeps its embeddings aligned with the corresponding prototype in the feature space, promoting directional independence that integrates seamlessly with the cross-entropy (CE) loss. We provide theoretical proof of FedOC's convergence under non-convex conditions. Extensive experiments demonstrate that FedOC outperforms seven state-of-the-art baselines, achieving up to a 10.12% accuracy improvement in both statistical and model heterogeneity settings.
A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models
Geng, Jiahui, Li, Qing, Woisetschlaeger, Herbert, Chen, Zongxiong, Wang, Yuxia, Nakov, Preslav, Jacobsen, Hans-Arno, Karray, Fakhri
This study investigates the machine unlearning techniques within the context of large language models (LLMs), referred to as \textit{LLM unlearning}. LLM unlearning offers a principled approach to removing the influence of undesirable data (e.g., sensitive or illegal information) from LLMs, while preserving their overall utility without requiring full retraining. Despite growing research interest, there is no comprehensive survey that systematically organizes existing work and distills key insights; here, we aim to bridge this gap. We begin by introducing the definition and the paradigms of LLM unlearning, followed by a comprehensive taxonomy of existing unlearning studies. Next, we categorize current unlearning approaches, summarizing their strengths and limitations. Additionally, we review evaluation metrics and benchmarks, providing a structured overview of current assessment methodologies. Finally, we outline promising directions for future research, highlighting key challenges and opportunities in the field.