Goto

Collaborating Authors

 Li, Mushu


ResLearn: Transformer-based Residual Learning for Metaverse Network Traffic Prediction

arXiv.org Artificial Intelligence

Our work proposes a comprehensive solution for predicting Metaverse network traffic, addressing the growing demand for intelligent resource management in eXtended Reality (XR) services. We first introduce a state-of-the-art testbed capturing a real-world dataset of virtual reality (VR), augmented reality (AR), and mixed reality (MR) traffic, made openly available for further research. To enhance prediction accuracy, we then propose a novel view-frame (VF) algorithm that accurately identifies video frames from traffic while ensuring privacy compliance, and we develop a Transformer-based progressive error-learning algorithm, referred to as ResLearn for Metaverse traffic prediction. ResLearn significantly improves time-series predictions by using fully connected neural networks to reduce errors, particularly during peak traffic, outperforming prior work by 99%. Our contributions offer Internet service providers (ISPs) robust tools for real-time network management to satisfy Quality of Service (QoS) and enhance user experience in the Metaverse.


Discern-XR: An Online Classifier for Metaverse Network Traffic

arXiv.org Artificial Intelligence

In this paper, we design an exclusive Metaverse network traffic classifier, named Discern-XR, to help Internet service providers (ISP) and router manufacturers enhance the quality of Metaverse services. Leveraging segmented learning, the Frame Vector Representation (FVR) algorithm and Frame Identification Algorithm (FIA) are proposed to extract critical frame-related statistics from raw network data having only four application-level features. A novel Augmentation, Aggregation, and Retention Online Training (A2R-OT) algorithm is proposed to find an accurate classification model through online training methodology. In addition, we contribute to the real-world Metaverse dataset comprising virtual reality (VR) games, VR video, VR chat, augmented reality (AR), and mixed reality (MR) traffic, providing a comprehensive benchmark. Discern-XR outperforms state-of-the-art classifiers by 7% while improving training efficiency and reducing false-negative rates. Our work advances Metaverse network traffic classification by standing as the state-of-the-art solution.


Digital Twin-Based User-Centric Edge Continual Learning in Integrated Sensing and Communication

arXiv.org Artificial Intelligence

In this paper, we propose a digital twin (DT)-based user-centric approach for processing sensing data in an integrated sensing and communication (ISAC) system with high accuracy and efficient resource utilization. The considered scenario involves an ISAC device with a lightweight deep neural network (DNN) and a mobile edge computing (MEC) server with a large DNN. After collecting sensing data, the ISAC device either processes the data locally or uploads them to the server for higher-accuracy data processing. To cope with data drifts, the server updates the lightweight DNN when necessary, referred to as continual learning. Our objective is to minimize the long-term average computation cost of the MEC server by optimizing two decisions, i.e., sensing data offloading and sensing data selection for the DNN update. A DT of the ISAC device is constructed to predict the impact of potential decisions on the long-term computation cost of the server, based on which the decisions are made with closed-form formulas. Experiments on executing DNN-based human motion recognition tasks are conducted to demonstrate the outstanding performance of the proposed DT-based approach in computation cost minimization.


Digital Twin-Based 3D Map Management for Edge-Assisted Mobile Augmented Reality

arXiv.org Artificial Intelligence

In this paper, we design a 3D map management scheme for edge-assisted mobile augmented reality (MAR) to support the pose estimation of individual MAR device, which uploads camera frames to an edge server. Our objective is to minimize the pose estimation uncertainty of the MAR device by periodically selecting a proper set of camera frames for uploading to update the 3D map. To address the challenges of the dynamic uplink data rate and the time-varying pose of the MAR device, we propose a digital twin (DT)-based approach to 3D map management. First, a DT is created for the MAR device, which emulates 3D map management based on predicting subsequent camera frames. Second, a model-based reinforcement learning (MBRL) algorithm is developed, utilizing the data collected from both the actual and the emulated data to manage the 3D map. With extensive emulated data provided by the DT, the MBRL algorithm can quickly provide an adaptive map management policy in a highly dynamic environment. Simulation results demonstrate that the proposed DT-based 3D map management outperforms benchmark schemes by achieving lower pose estimation uncertainty and higher data efficiency in dynamic environments.


Holistic Network Virtualization and Pervasive Network Intelligence for 6G

arXiv.org Artificial Intelligence

In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.


Digital Twin-Empowered Network Planning for Multi-Tier Computing

arXiv.org Artificial Intelligence

In this paper, we design a resource management scheme to support stateful applications, which will be prevalent in 6G networks. Different from stateless applications, stateful applications require context data while executing computing tasks from user terminals (UTs). Using a multi-tier computing paradigm with servers deployed at the core network, gateways, and base stations to support stateful applications, we aim to optimize long-term resource reservation by jointly minimizing the usage of computing, storage, and communication resources and the cost from reconfiguring resource reservation. The coupling among different resources and the impact of UT mobility create challenges in resource management. To address the challenges, we develop digital twin (DT) empowered network planning with two elements, i.e., multiresource reservation and resource reservation reconfiguration. First, DTs are designed for collecting UT status data, based on which UTs are grouped according to their mobility patterns. Second, an algorithm is proposed to customize resource reservation for different groups to satisfy their different resource demands. Last, a Meta-learning-based approach is developed to reconfigure resource reservation for balancing the network resource usage and the reconfiguration cost. Simulation results demonstrate that the proposed DT-empowered network planning outperforms benchmark frameworks by using less resources and incurring lower reconfiguration costs. C. Zhou, X. Shen, and W. Zhuang are with the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada (e-mail: c89zhou@uwaterloo.ca; J. Gao is with the School of Information Technology, Carleton University, Ottawa, ON, K1S 5B6, Canada (email: jie.gao6@carleton.ca).