Goto

Collaborating Authors

 Li, Mengze


HealthGPT: A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation

arXiv.org Artificial Intelligence

Our bootstrapping philosophy is to progressively adapt heterogeneous comprehension and generation knowledge to pre-trained large language models (LLMs). This is achieved through a novel heterogeneous low-rank adaptation (H-LoRA) technique, which is complemented by a tailored hierarchical visual perception approach and a three-stage learning strategy. To effectively learn the HealthGPT, we devise a comprehensive medical domain-specific comprehension and generation dataset called VL-Health. Experimental results demonstrate exceptional performance and scalability of HealthGPT in medical visual unified tasks. Our project can be accessed at https://github.com/DCDmllm/HealthGPT.


Argumentation Computation with Large Language Models : A Benchmark Study

arXiv.org Artificial Intelligence

In recent years, large language models (LLMs) have made significant advancements in neuro-symbolic computing. However, the combination of LLM with argumentation computation remains an underexplored domain, despite its considerable potential for real-world applications requiring defeasible reasoning. In this paper, we aim to investigate the capability of LLMs in determining the extensions of various abstract argumentation semantics. To achieve this, we develop and curate a benchmark comprising diverse abstract argumentation frameworks, accompanied by detailed explanations of algorithms for computing extensions. Subsequently, we fine-tune LLMs on the proposed benchmark, focusing on two fundamental extension-solving tasks. As a comparative baseline, LLMs are evaluated using a chain-of-thought approach, where they struggle to accurately compute semantics. In the experiments, we demonstrate that the process explanation plays a crucial role in semantics computation learning. Models trained with explanations show superior generalization accuracy compared to those trained solely with question-answer pairs. Furthermore, by leveraging the self-explanation capabilities of LLMs, our approach provides detailed illustrations that mitigate the lack of transparency typically associated with neural networks. Our findings contribute to the broader understanding of LLMs' potential in argumentation computation, offering promising avenues for further research in this domain.


Backpropogation-Free Multi-modal On-Device Model Adaptation via Cloud-Device Collaboration

arXiv.org Artificial Intelligence

These devices serve as data collection powerhouses, continuously amassing vast repositories of personalized multi-modal data, which can include a wide array of input modalities such as text, images and videos. The potential locked within this trove of multi-modal data arriving continuously is immense, promising to unlock high-quality and tailored device-aware services for individual users. Despite promising, the personalized device service involves analyzing the dynamic nature of the multi-modal data that underscore users' intentions. The prevailing artificial intelligence (AI) systems, primarily trained and deployed in cloud-based environments, face a profound challenge in adapting to the dynamic device data when using a static cloud model for all individual users, mainly due to the distribution shift of the cloud and device data, as shown in Figure 1. In other words, high-quality personalized service requires AI systems to undergo continual refinement and adaptation to accommodate the evolving landscape of personalized multi-modal data. Intuitively, one of the straightforward adaptation strategies is to fine-tune the cloud model based on the device's multi-modal data, which can kindly alleviate the cloud-device data distribution shift to model users' intentions. Nevertheless, we contend that the fine-tuning-adaptation (FTA) paradigm may not satisfactorily resolve device model personalization, which can be summarized as two key aspects: (1) Undesirable Annotation.


Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by Integrating Expert Knowledge and Interpretable Data-driven Intelligence

arXiv.org Artificial Intelligence

Although data-driven artificial intelligence (AI) in medical image diagnosis has shown impressive performance in silico, the lack of interpretability makes it difficult to incorporate the "black box" into clinicians' workflows. To make the diagnostic patterns learned from data understandable by clinicians, we develop an interpretable model, knowledge-guided diagnosis model (KGDM), that provides a visualized reasoning process containing AI-based biomarkers and retrieved cases that with the same diagnostic patterns. It embraces clinicians' prompts into the interpreted reasoning through human-AI interaction, leading to potentially enhanced safety and more accurate predictions. This study investigates the performance, interpretability, and clinical utility of KGDM in the diagnosis of infectious keratitis (IK), which is the leading cause of corneal blindness. The classification performance of KGDM is evaluated on a prospective validation dataset, an external testing dataset, and an publicly available testing dataset. The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233 and exhibit consistent diagnostic patterns with clinic experience. Moreover, a human-AI collaborative diagnosis test is conducted and the participants with collaboration achieved a performance exceeding that of both humans and AI. By synergistically integrating interpretability and interaction, this study facilitates the convergence of clinicians' expertise and data-driven intelligence. The promotion of inexperienced ophthalmologists with the aid of AI-based biomarkers, as well as increased AI prediction by intervention from experienced ones, demonstrate a promising diagnostic paradigm for infectious keratitis using KGDM, which holds the potential for extension to other diseases where experienced medical practitioners are limited and the safety of AI is concerned.


Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer

arXiv.org Artificial Intelligence

Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.This setting neglects the more practical scenario where training data are collected from multiple sources. This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains, termed Multi-source Active Domain Adaptation (MADA). Not surprisingly, we find that most traditional ADA methods cannot work directly in such a setting, mainly due to the excessive domain gap introduced by all the source domains and thus their uncertainty-aware sample selection can easily become miscalibrated under the multi-domain shifts. Considering this, we propose a Dynamic integrated uncertainty valuation framework(Detective) that comprehensively consider the domain shift between multi-source domains and target domain to detect the informative target samples. Specifically, the leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the model's parameters to fit the union of multi-source domains. This enables an approximate single-source domain modeling by the dynamic model. We then comprehensively measure both domain uncertainty and predictive uncertainty in the target domain to detect informative target samples using evidential deep learning, thereby mitigating uncertainty miscalibration. Furthermore, we introduce a contextual diversity-aware calculator to enhance the diversity of the selected samples. Experiments demonstrate that our solution outperforms existing methods by a considerable margin on three domain adaptation benchmarks.


IDEAL: Toward High-efficiency Device-Cloud Collaborative and Dynamic Recommendation System

arXiv.org Artificial Intelligence

Recommendation systems have shown great potential to solve the information explosion problem and enhance user experience in various online applications, which recently present two emerging trends: (i) Collaboration: single-sided model trained on-cloud (separate learning) to the device-cloud collaborative recommendation (collaborative learning). (ii) Real-time Dynamic: the network parameters are the same across all the instances (static model) to adaptive network parameters generation conditioned on the real-time instances (dynamic model). The aforementioned two trends enable the device-cloud collaborative and dynamic recommendation, which deeply exploits the recommendation pattern among cloud-device data and efficiently characterizes different instances with different underlying distributions based on the cost of frequent device-cloud communication. Despite promising, we argue that most of the communications are unnecessary to request the new parameters of the recommendation system on the cloud since the on-device data distribution are not always changing. To alleviate this issue, we designed a Intelligent DEvice-Cloud PArameter Request ModeL (IDEAL) that can be deployed on the device to calculate the request revenue with low resource consumption, so as to ensure the adaptive device-cloud communication with high revenue. We envision a new device intelligence learning task to implement IDEAL by detecting the data out-of-domain. Moreover, we map the user's real-time behavior to a normal distribution, the uncertainty is calculated by the multi-sampling outputs to measure the generalization ability of the device model to the current user behavior. Our experimental study demonstrates IDEAL's effectiveness and generalizability on four public benchmarks, which yield a higher efficient device-cloud collaborative and dynamic recommendation paradigm.


Geometry of the Minimum Volume Confidence Sets

arXiv.org Machine Learning

Computation of confidence sets is central to data science and machine learning, serving as the workhorse of A/B testing and underpinning the operation and analysis of reinforcement learning algorithms. This paper studies the geometry of the minimum-volume confidence sets for the multinomial parameter. When used in place of more standard confidence sets and intervals based on bounds and asymptotic approximation, learning algorithms can exhibit improved sample complexity. Prior work showed the minimum-volume confidence sets are the level-sets of a discontinuous function defined by an exact p-value. While the confidence sets are optimal in that they have minimum average volume, computation of membership of a single point in the set is challenging for problems of modest size. Since the confidence sets are level-sets of discontinuous functions, little is apparent about their geometry. This paper studies the geometry of the minimum volume confidence sets by enumerating and covering the continuous regions of the exact p-value function. This addresses a fundamental question in A/B testing: given two multinomial outcomes, how can one determine if their corresponding minimum volume confidence sets are disjoint? We answer this question in a restricted setting.