Goto

Collaborating Authors

 Li, Liangyue


DEEPER Insight into Your User: Directed Persona Refinement for Dynamic Persona Modeling

arXiv.org Artificial Intelligence

To advance personalized applications such as recommendation systems and user behavior prediction, recent research increasingly adopts large language models (LLMs) for human -readable persona modeling. In dynamic real -world scenarios, effective persona modeling necessitates leveraging streaming behavior data to continually optimize user personas. However, existing methods -whether regenerating personas or incrementally extending them with new behaviors -often fail to achieve sustained improvements in persona quality or future behavior prediction accuracy. To address this, we propose DEEPER, a novel approach for dynamic persona modeling that enables continual persona optimization. Specifically, we enhance the model's direction -search capability through an iterative reinforcement learning framework, allowing it to automatically identify effective update directions and optimize personas using discrepancies between user behaviors and model predictions. Extensive experiments on dynamic persona modeling involving 4800 users across 10 domains highlight the superior persona optimization capabilities of DEEPER, delivering an impressive 32.2% average reduction in user behavior prediction error over four update rounds -outperforming the best baseline by a remarkable 22.92%.


Think Thrice Before You Act: Progressive Thought Refinement in Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have demonstrated that progressive refinement, rather than providing a single answer, results in more accurate and thoughtful outputs. However, existing methods often rely heavily on supervision signals to evaluate previous responses, making it difficult to assess output quality in more open-ended scenarios effectively. Additionally, these methods are typically designed for specific tasks, which limits their generalization to new domains. To address these limitations, we propose Progressive Thought Refinement (PTR), a framework that enables LLMs to refine their responses progressively. PTR operates in two phases: (1) Thought data construction stage: We propose a weak and strong model collaborative selection strategy to build a high-quality progressive refinement dataset to ensure logical consistency from thought to answers, and the answers are gradually refined in each round. (2) Thought-Mask Fine-Tuning Phase: We design a training structure to mask the "thought" and adjust loss weights to encourage LLMs to refine prior thought, teaching them to implicitly understand "how to improve" rather than "what is correct." Experimental results show that PTR significantly enhances LLM performance across ten diverse tasks (avg. from 49.6% to 53.5%) without task-specific fine-tuning. Notably, in more open-ended tasks, LLMs also demonstrate substantial improvements in the quality of responses beyond mere accuracy, suggesting that PTR truly teaches LLMs to self-improve over time.


Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation

arXiv.org Artificial Intelligence

Cross-Domain Sequential Recommendation (CDSR) aims to mine and transfer users' sequential preferences across different domains to alleviate the long-standing cold-start issue. Traditional CDSR models capture collaborative information through user and item modeling while overlooking valuable semantic information. Recently, Large Language Model (LLM) has demonstrated powerful semantic reasoning capabilities, motivating us to introduce them to better capture semantic information. However, introducing LLMs to CDSR is non-trivial due to two crucial issues: seamless information integration and domain-specific generation. To this end, we propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach and domain grounding on LLM simultaneously. Specifically, we first present a novel dual-graph sequential model to capture the diverse information, along with an alignment and contrastive learning method to facilitate domain knowledge transfer. Subsequently, a user retrieve-generation model is adopted to seamlessly integrate the structural information into LLM, fully harnessing its emergent inferencing ability. Furthermore, we propose a domain-specific strategy and a refinement module to prevent out-of-domain generation. Extensive experiments on Amazon demonstrated the information integration and domain-specific generation ability of URLLM in comparison to state-of-the-art baselines. Our code is available at https://github.com/TingJShen/URLLM


Modeling User Viewing Flow Using Large Language Models for Article Recommendation

arXiv.org Artificial Intelligence

This paper proposes the User Viewing Flow Modeling (SINGLE) method for the article recommendation task, which models the user constant preference and instant interest from user-clicked articles. Specifically, we first employ a user constant viewing flow modeling method to summarize the user's general interest to recommend articles. In this case, we utilize Large Language Models (LLMs) to capture constant user preferences from previously clicked articles, such as skills and positions. Then we design the user instant viewing flow modeling method to build interactions between user-clicked article history and candidate articles. It attentively reads the representations of user-clicked articles and aims to learn the user's different interest views to match the candidate article. Our experimental results on the Alibaba Technology Association (ATA) website show the advantage of SINGLE, achieving a 2.4% improvement over previous baseline models in the online A/B test. Our further analyses illustrate that SINGLE has the ability to build a more tailored recommendation system by mimicking different article viewing behaviors of users and recommending more appropriate and diverse articles to match user interests.


Optimal Propagation for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have achieved tremendous success in a variety of real-world applications by relying on the fixed graph data as input. However, the initial input graph might not be optimal in terms of specific downstream tasks, because of information scarcity, noise, adversarial attacks, or discrepancies between the distribution in graph topology, features, and groundtruth labels. In this paper, we propose a bi-level optimization approach for learning the optimal graph structure via directly learning the Personalized PageRank propagation matrix as well as the downstream semi-supervised node classification simultaneously. We also explore a low-rank approximation model for further reducing the time complexity. Empirical evaluations show the superior efficacy and robustness of the proposed model over all baseline methods.


Ranking with Adaptive Neighbors

arXiv.org Machine Learning

Retrieving the most similar objects in a large-scale database for a given query is a fundamental building block in many application domains, ranging from web searches, visual, cross media, and document retrievals. State-of-the-art approaches have mainly focused on capturing the underlying geometry of the data manifolds. Graph-based approaches, in particular, define various diffusion processes on weighted data graphs. Despite success, these approaches rely on fixed-weight graphs, making ranking sensitive to the input affinity matrix. In this study, we propose a new ranking algorithm that simultaneously learns the data affinity matrix and the ranking scores. The proposed optimization formulation assigns adaptive neighbors to each point in the data based on the local connectivity, and the smoothness constraint assigns similar ranking scores to similar data points. We develop a novel and efficient algorithm to solve the optimization problem. Evaluations using synthetic and real datasets suggest that the proposed algorithm can outperform the existing methods.


Predicting Professions through Probabilistic Model under Social Context

AAAI Conferences

In this paper, we investigate the problem of predicting people's professions under social context. Previous work considering clothing information as well as fore/background context preliminarily proves the feasibility of predicting professions. In this paper, we discuss this problem in a more general case --- multiple people in one photo with arbitrary poses, and argue that with appropriately built partial body features, spatial relations, and background context, more appealing results are achieved by a probabilistic model. We conduct experiments on $14$ representative professions with over $7000$ images, and demonstrate the model's superiority with impressive results.