Goto

Collaborating Authors

 Li, Jiangyong


Reinforcement Learning with Evolutionary Trajectory Generator: A General Approach for Quadrupedal Locomotion

arXiv.org Artificial Intelligence

Recently reinforcement learning (RL) has emerged as a promising approach for quadrupedal locomotion, which can save the manual effort in conventional approaches such as designing skill-specific controllers. However, due to the complex nonlinear dynamics in quadrupedal robots and reward sparsity, it is still difficult for RL to learn effective gaits from scratch, especially in challenging tasks such as walking over the balance beam. To alleviate such difficulty, we propose a novel RL-based approach that contains an evolutionary foot trajectory generator. Unlike prior methods that use a fixed trajectory generator, the generator continually optimizes the shape of the output trajectory for the given task, providing diversified motion priors to guide the policy learning. The policy is trained with reinforcement learning to output residual control signals that fit different gaits. We then optimize the trajectory generator and policy network alternatively to stabilize the training and share the exploratory data to improve sample efficiency. As a result, our approach can solve a range of challenging tasks in simulation by learning from scratch, including walking on a balance beam and crawling through the cave. To further verify the effectiveness of our approach, we deploy the controller learned in the simulation on a 12-DoF quadrupedal robot, and it can successfully traverse challenging scenarios with efficient gaits.


Intervention Aided Reinforcement Learning for Safe and Practical Policy Optimization in Navigation

arXiv.org Artificial Intelligence

In contrast to the intense studies of deep Reinforcement Learning(RL) in games and simulations [1], employing deep RL to real world robots remains challenging, especially in high risk scenarios. Though there has been some progresses in RL based control in realistic robotics [2, 3, 4, 5], most of those previous works does not specifically deal with the safety concerns in the RL training process. For majority of high risk scenarios in real world, deep RL still suffer from bottlenecks both in cost and safety. As an example, collisions are extremely dangerous for UAV, while RL training requires thousands of times of collisions. Other works contributes to building simulation environments and bridging the gap between reality and simulation [4, 5]. However, building such simulation environment is arduous, not to mention that the gap can not be totally made up. To address the safety issue in real-world RL training, we present the Intervention Aided Reinforcement Learning (IARL) framework. Intervention is commonly used in many automatic control systems in real world for safety insurance. It is also regarded as an important evaluation criteria for autonomous navigation systems, e.g. the disengagement ratio in autonomous driving