Goto

Collaborating Authors

Li, Hao


CSRN: Collaborative Sequential Recommendation Networks for News Retrieval

arXiv.org Machine Learning

Nowadays, news apps have taken over the popularity of paper-based media, providing a great opportunity for personalization. Recurrent Neural Network (RNN)-based sequential recommendation is a popular approach that utilizes users' recent browsing history to predict future items. This approach is limited that it does not consider the societal influences of news consumption, i.e., users may follow popular topics that are constantly changing, while certain hot topics might be spreading only among specific groups of people. Such societal impact is difficult to predict given only users' own reading histories. On the other hand, the traditional User-based Collaborative Filtering (UserCF) makes recommendations based on the interests of the "neighbors", which provides the possibility to supplement the weaknesses of RNN-based methods. However, conventional UserCF only uses a single similarity metric to model the relationships between users, which is too coarse-grained and thus limits the performance. In this paper, we propose a framework of deep neural networks to integrate the RNN-based sequential recommendations and the key ideas from UserCF, to develop Collaborative Sequential Recommendation Networks (CSRNs). Firstly, we build a directed co-reading network of users, to capture the fine-grained topic-specific similarities between users in a vector space. Then, the CSRN model encodes users with RNNs, and learns to attend to neighbors and summarize what news they are reading at the moment. Finally, news articles are recommended according to both the user's own state and the summarized state of the neighbors. Experiments on two public datasets show that the proposed model outperforms the state-of-the-art approaches significantly.


Learning to Infer Implicit Surfaces without 3D Supervision

Neural Information Processing Systems

Recent advances in 3D deep learning have shown that it is possible to train highly effective deep models for 3D shape generation, directly from 2D images. This is particularly interesting since the availability of 3D models is still limited compared to the massive amount of accessible 2D images, which is invaluable for training. The representation of 3D surfaces itself is a key factor for the quality and resolution of the 3D output. While explicit representations, such as point clouds and voxels, can span a wide range of shape variations, their resolutions are often limited. Mesh-based representations are more efficient but are limited by their ability to handle varying topologies.


Rethinking the Hyperparameters for Fine-tuning

arXiv.org Machine Learning

Fine-tuning from pre-trained ImageNet models has become the de-facto standard for various computer vision tasks. Current practices for fine-tuning typically involve selecting an ad-hoc choice of hyperparameters and keeping them fixed to values normally used for training from scratch. This paper re-examines several common practices of setting hyperparameters for fine-tuning. Our findings are based on extensive empirical evaluation for fine-tuning on various transfer learning benchmarks. (1) While prior works have thoroughly investigated learning rate and batch size, momentum for fine-tuning is a relatively unexplored parameter. We find that the value of momentum also affects fine-tuning performance and connect it with previous theoretical findings. (2) Optimal hyperparameters for fine-tuning, in particular, the effective learning rate, are not only dataset dependent but also sensitive to the similarity between the source domain and target domain. This is in contrast to hyperparameters for training from scratch. (3) Reference-based regularization that keeps models close to the initial model does not necessarily apply for "dissimilar" datasets. Our findings challenge common practices of fine-tuning and encourages deep learning practitioners to rethink the hyperparameters for fine-tuning.


Visualizing the Loss Landscape of Neural Nets

Neural Information Processing Systems

Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effect on the underlying loss landscape, is not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature, and make meaningful side-by-side comparisons between loss functions.


Training Quantized Nets: A Deeper Understanding

Neural Information Processing Systems

Currently, deep neural networks are deployed on low-power portable devices by first training a full-precision model using powerful hardware, and then deriving a corresponding low-precision model for efficient inference on such systems. However, training models directly with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memory capacity, and power consumption. Numerous recent publications have studied methods for training quantized networks, but these studies have mostly been empirical. In this work, we investigate training methods for quantized neural networks from a theoretical viewpoint. We first explore accuracy guarantees for training methods under convexity assumptions.


MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models

Neural Information Processing Systems

Machine Comprehension (MC) is one of the core problems in natural language processing, requiring both understanding of the natural language and knowledge about the world. Rapid progress has been made since the release of several benchmark datasets, and recently the state-of-the-art models even surpass human performance on the well-known SQuAD evaluation. In this paper, we transfer knowledge learned from machine comprehension to the sequence-to-sequence tasks to deepen the understanding of the text. We propose MacNet: a novel encoder-decoder supplementary architecture to the widely used attention-based sequence-to-sequence models. Experiments on neural machine translation (NMT) and abstractive text summarization show that our proposed framework can significantly improve the performance of the baseline models, and our method for the abstractive text summarization achieves the state-of-the-art results on the Gigaword dataset.


Reinforced Dynamic Reasoning for Conversational Question Generation

arXiv.org Artificial Intelligence

This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning (ReDR) network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.


Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement

arXiv.org Machine Learning

Satellite-based positioning system such as GPS often suffers from large amount of noise that degrades the positioning accuracy dramatically especially in real-time applications. In this work, we consider a data-mining approach to enhance the GPS signal. We build a large-scale high precision GPS receiver grid system to collect real-time GPS signals for training. The Gaussian Process (GP) regression is chosen to model the vertical Total Electron Content (vTEC) distribution of the ionosphere of the Earth. Our experiments show that the noise in the real-time GPS signals often exceeds the breakdown point of the conventional robust regression methods resulting in sub-optimal system performance. We propose a three-step approach to address this challenge. In the first step we perform a set of signal validity tests to separate the signals into clean and dirty groups. In the second step, we train an initial model on the clean signals and then reweigting the dirty signals based on the residual error. A final model is retrained on both the clean signals and the reweighted dirty signals. In the theoretical analysis, we prove that the proposed three-step approach is able to tolerate much higher noise level than the vanilla robust regression methods if two reweighting rules are followed. We validate the superiority of the proposed method in our real-time high precision positioning system against several popular state-of-the-art robust regression methods. Our method achieves centimeter positioning accuracy in the benchmark region with probability $78.4\%$ , outperforming the second best baseline method by a margin of $8.3\%$. The benchmark takes 6 hours on 20,000 CPU cores or 14 years on a single CPU.


Semi-Supervised First-Person Activity Recognition in Body-Worn Video

arXiv.org Machine Learning

Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video.


Visualizing the Loss Landscape of Neural Nets

Neural Information Processing Systems

Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effect on the underlying loss landscape, is not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature, and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.