Li, Chong
Structured and sparse partial least squares coherence for multivariate cortico-muscular analysis
Sun, Jingyao, Zhang, Qilu, Ma, Di, Jia, Tianyu, Jia, Shijie, Zhai, Xiaoxue, Xie, Ruimou, Lin, Ping-Ju, Li, Zhibin, Pan, Yu, Ji, Linhong, Li, Chong
Multivariate cortico-muscular analysis has recently emerged as a promising approach for evaluating the corticospinal neural pathway. However, current multivariate approaches encounter challenges such as high dimensionality and limited sample sizes, thus restricting their further applications. In this paper, we propose a structured and sparse partial least squares coherence algorithm (ssPLSC) to extract shared latent space representations related to cortico-muscular interactions. Our approach leverages an embedded optimization framework by integrating a partial least squares (PLS)-based objective function, a sparsity constraint and a connectivity-based structured constraint, addressing the generalizability, interpretability and spatial structure. To solve the optimization problem, we develop an efficient alternating iterative algorithm within a unified framework and prove its convergence experimentally. Extensive experimental results from one synthetic and several real-world datasets have demonstrated that ssPLSC can achieve competitive or better performance over some representative multivariate cortico-muscular fusion methods, particularly in scenarios characterized by limited sample sizes and high noise levels. This study provides a novel multivariate fusion method for cortico-muscular analysis, offering a transformative tool for the evaluation of corticospinal pathway integrity in neurological disorders.
Baichuan-Omni-1.5 Technical Report
Li, Yadong, Liu, Jun, Zhang, Tao, Zhang, Tao, Chen, Song, Li, Tianpeng, Li, Zehuan, Liu, Lijun, Ming, Lingfeng, Dong, Guosheng, Pan, Da, Li, Chong, Fang, Yuanbo, Kuang, Dongdong, Wang, Mingrui, Zhu, Chenglin, Zhang, Youwei, Guo, Hongyu, Zhang, Fengyu, Wang, Yuran, Ding, Bowen, Song, Wei, Li, Xu, Huo, Yuqi, Liang, Zheng, Zhang, Shusen, Wu, Xin, Zhao, Shuai, Xiong, Linchu, Wu, Yozhen, Ye, Jiahui, Lu, Wenhao, Li, Bowen, Zhang, Yan, Zhou, Yaqi, Chen, Xin, Su, Lei, Zhang, Hongda, Chen, Fuzhong, Dong, Xuezhen, Nie, Na, Wu, Zhiying, Xiao, Bin, Li, Ting, Dang, Shunya, Zhang, Ping, Sun, Yijia, Wu, Jincheng, Yang, Jinjie, Lin, Xionghai, Ma, Zhi, Wu, Kegeng, li, Jia, Yang, Aiyuan, Liu, Hui, Zhang, Jianqiang, Chen, Xiaoxi, Ai, Guangwei, Zhang, Wentao, Chen, Yicong, Huang, Xiaoqin, Li, Kun, Luo, Wenjing, Duan, Yifei, Zhu, Lingling, Xiao, Ran, Su, Zhe, Pu, Jiani, Wang, Dian, Jia, Xu, Zhang, Tianyu, Ai, Mengyu, Wang, Mang, Qiao, Yujing, Zhang, Lei, Shen, Yanjun, Yang, Fan, Zhen, Miao, Zhou, Yijie, Chen, Mingyang, Li, Fei, Zhu, Chenzheng, Lu, Keer, Zhao, Yaqi, Liang, Hao, Li, Youquan, Qin, Yanzhao, Sun, Linzhuang, Xu, Jianhua, Sun, Haoze, Lin, Mingan, Zhou, Zenan, Chen, Weipeng
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Decoding the Flow: CauseMotion for Emotional Causality Analysis in Long-form Conversations
Zhang, Yuxuan, Li, Yulong, Yu, Zichen, Tang, Feilong, Lu, Zhixiang, Li, Chong, Dang, Kang, Su, Jionglong
Long-sequence causal reasoning seeks to uncover causal relationships within extended time series data but is hindered by complex dependencies and the challenges of validating causal links. To address the limitations of large-scale language models (e.g., GPT-4) in capturing intricate emotional causality within extended dialogues, we propose CauseMotion, a long-sequence emotional causal reasoning framework grounded in Retrieval-Augmented Generation (RAG) and multimodal fusion. Unlike conventional methods relying only on textual information, CauseMotion enriches semantic representations by incorporating audio-derived features-vocal emotion, emotional intensity, and speech rate-into textual modalities. By integrating RAG with a sliding window mechanism, it effectively retrieves and leverages contextually relevant dialogue segments, thus enabling the inference of complex emotional causal chains spanning multiple conversational turns. To evaluate its effectiveness, we constructed the first benchmark dataset dedicated to long-sequence emotional causal reasoning, featuring dialogues with over 70 turns. Experimental results demonstrate that the proposed RAG-based multimodal integrated approach, the efficacy of substantially enhances both the depth of emotional understanding and the causal inference capabilities of large-scale language models. A GLM-4 integrated with CauseMotion achieves an 8.7% improvement in causal accuracy over the original model and surpasses GPT-4o by 1.2%. Additionally, on the publicly available DiaASQ dataset, CauseMotion-GLM-4 achieves state-of-the-art results in accuracy, F1 score, and causal reasoning accuracy.
LLM$\times$MapReduce: Simplified Long-Sequence Processing using Large Language Models
Zhou, Zihan, Li, Chong, Chen, Xinyi, Wang, Shuo, Chao, Yu, Li, Zhili, Wang, Haoyu, An, Rongqiao, Shi, Qi, Tan, Zhixing, Han, Xu, Shi, Xiaodong, Liu, Zhiyuan, Sun, Maosong
Enlarging the context window of large language models (LLMs) has become a crucial research area, particularly for applications involving extremely long texts. In this work, we propose a novel training-free framework for processing long texts, utilizing a divide-and-conquer strategy to achieve comprehensive document understanding. The proposed LLM$\times$MapReduce framework splits the entire document into several chunks for LLMs to read and then aggregates the intermediate answers to produce the final output. The main challenge for divide-and-conquer long text processing frameworks lies in the risk of losing essential long-range information when splitting the document, which can lead the model to produce incomplete or incorrect answers based on the segmented texts. Disrupted long-range information can be classified into two categories: inter-chunk dependency and inter-chunk conflict. We design a structured information protocol to better cope with inter-chunk dependency and an in-context confidence calibration mechanism to resolve inter-chunk conflicts. Experimental results demonstrate that LLM$\times$MapReduce can outperform representative open-source and commercial long-context LLMs, and is applicable to several different models.
Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment
Li, Chong, Wang, Shaonan, Zhang, Jiajun, Zong, Chengqing
Multilingual generative models obtain remarkable cross-lingual in-context learning capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages and learn isolated distributions of multilingual sentence representations, which may hinder knowledge transfer across languages. To bridge this gap, we propose a simple yet effective cross-lingual alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns outputs by following cross-lingual instructions in the target language. Experimental results show that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative language models and mitigates the performance gap. Further analyses reveal that it results in a better internal multilingual representation distribution of multilingual models.
X-Instruction: Aligning Language Model in Low-resource Languages with Self-curated Cross-lingual Instructions
Li, Chong, Yang, Wen, Zhang, Jiajun, Lu, Jinliang, Wang, Shaonan, Zong, Chengqing
Large language models respond well in high-resource languages like English but struggle in low-resource languages. It may arise from the lack of high-quality instruction following data in these languages. Directly translating English samples into these languages can be a solution but unreliable, leading to responses with translation errors and lacking language-specific or cultural knowledge. To address this issue, we propose a novel method to construct cross-lingual instruction following samples with instruction in English and response in low-resource languages. Specifically, the language model first learns to generate appropriate English instructions according to the natural web texts in other languages as responses. The candidate cross-lingual instruction tuning samples are further refined and diversified. We have employed this method to build a large-scale cross-lingual instruction tuning dataset on 10 languages, namely X-Instruction. The instruction data built using our method incorporate more language-specific knowledge compared with the naive translation method. Experimental results have shown that the response quality of the model tuned on X-Instruction greatly exceeds the model distilled from a powerful teacher model, reaching or even surpassing the ones of ChatGPT. In addition, we find that models tuned on cross-lingual instruction following samples can follow the instruction in the output language without further tuning.
NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation
Huo, Jingyang, Wang, Yikai, Qian, Xuelin, Wang, Yun, Li, Chong, Feng, Jianfeng, Fu, Yanwei
Recent fMRI-to-image approaches mainly focused on associating fMRI signals with specific conditions of pre-trained diffusion models. These approaches, while producing high-quality images, capture only a limited aspect of the complex information in fMRI signals and offer little detailed control over image creation. In contrast, this paper proposes to directly modulate the generation process of diffusion models using fMRI signals. Our approach, NeuroPictor, divides the fMRI-to-image process into three steps: i) fMRI calibrated-encoding, to tackle multi-individual pre-training for a shared latent space to minimize individual difference and enable the subsequent cross-subject training; ii) fMRI-to-image cross-subject pre-training, perceptually learning to guide diffusion model with high- and low-level conditions across different individuals; iii) fMRI-to-image single-subject refining, similar with step ii but focus on adapting to particular individual. NeuroPictor extracts high-level semantic features from fMRI signals that characterizing the visual stimulus and incrementally fine-tunes the diffusion model with a low-level manipulation network to provide precise structural instructions. By training with over 60,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity, particularly in the within-subject setting, as evidenced in benchmark datasets. Project page: https://jingyanghuo.github.io/neuropictor/.
MulCogBench: A Multi-modal Cognitive Benchmark Dataset for Evaluating Chinese and English Computational Language Models
Zhang, Yunhao, Zhang, Xiaohan, Li, Chong, Wang, Shaonan, Zong, Chengqing
Pre-trained computational language models have recently made remarkable progress in harnessing the language abilities which were considered unique to humans. Their success has raised interest in whether these models represent and process language like humans. To answer this question, this paper proposes MulCogBench, a multi-modal cognitive benchmark dataset collected from native Chinese and English participants. It encompasses a variety of cognitive data, including subjective semantic ratings, eye-tracking, functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). To assess the relationship between language models and cognitive data, we conducted a similarity-encoding analysis which decodes cognitive data based on its pattern similarity with textual embeddings. Results show that language models share significant similarities with human cognitive data and the similarity patterns are modulated by the data modality and stimuli complexity. Specifically, context-aware models outperform context-independent models as language stimulus complexity increases. The shallow layers of context-aware models are better aligned with the high-temporal-resolution MEG signals whereas the deeper layers show more similarity with the high-spatial-resolution fMRI. These results indicate that language models have a delicate relationship with brain language representations. Moreover, the results between Chinese and English are highly consistent, suggesting the generalizability of these findings across languages.
BigTranslate: Augmenting Large Language Models with Multilingual Translation Capability over 100 Languages
Yang, Wen, Li, Chong, Zhang, Jiajun, Zong, Chengqing
Large language models (LLMs) demonstrate promising translation performance among various natural languages. However, many LLMs especially the open-sourced ones, such as BLOOM and LLaMA, are English-dominant and support only dozens of natural languages, making the potential of LLMs on language translation less explored. In this work, we present BigTranslate which adapts LLaMA that covers only 20 languages and enhances it with multilingual translation capability on more than 100 languages. BigTranslate is built upon LLaMA-13B and it is optimized in three steps. First, we continue training LLaMA with massive Chinese monolingual data. Second, we continue training the model with a large-scale parallel dataset that covers 102 natural languages. Third, we instruct-tune the foundation model with multilingual translation instructions, leading to our BigTranslate model. The preliminary experiments on multilingual translation show that BigTranslate performs comparably with ChatGPT and Google Translate in many languages and even outperforms ChatGPT in 8 language pairs. We release the BigTranslate model and hope it can advance the research progress.
Interpreting and Exploiting Functional Specialization in Multi-Head Attention under Multi-task Learning
Li, Chong, Wang, Shaonan, Zhang, Yunhao, Zhang, Jiajun, Zong, Chengqing
Transformer-based models, even though achieving super-human performance on several downstream tasks, are often regarded as a black box and used as a whole. It is still unclear what mechanisms they have learned, especially their core module: multi-head attention. Inspired by functional specialization in the human brain, which helps to efficiently handle multiple tasks, this work attempts to figure out whether the multi-head attention module will evolve similar function separation under multi-tasking training. If it is, can this mechanism further improve the model performance? To investigate these questions, we introduce an interpreting method to quantify the degree of functional specialization in multi-head attention. We further propose a simple multi-task training method to increase functional specialization and mitigate negative information transfer in multi-task learning. Experimental results on seven pre-trained transformer models have demonstrated that multi-head attention does evolve functional specialization phenomenon after multi-task training which is affected by the similarity of tasks. Moreover, the multi-task training strategy based on functional specialization boosts performance in both multi-task learning and transfer learning without adding any parameters.