Li, Chengpeng
START: Self-taught Reasoner with Tools
Li, Chengpeng, Xue, Mingfeng, Zhang, Zhenru, Yang, Jiaxi, Zhang, Beichen, Wang, Xiang, Yu, Bowen, Hui, Binyuan, Lin, Junyang, Liu, Dayiheng
Large reasoning models (LRMs) like OpenAI-o1 and DeepSeek-R1 have demonstrated remarkable capabilities in complex reasoning tasks through the utilization of long Chain-of-thought (CoT). However, these models often suffer from hallucinations and inefficiencies due to their reliance solely on internal reasoning processes. In this paper, we introduce START (Self-Taught Reasoner with Tools), a novel tool-integrated long CoT reasoning LLM that significantly enhances reasoning capabilities by leveraging external tools. Through code execution, START is capable of performing complex computations, self-checking, exploring diverse methods, and self-debugging, thereby addressing the limitations of LRMs. The core innovation of START lies in its self-learning framework, which comprises two key techniques: 1) Hint-infer: We demonstrate that inserting artificially designed hints (e.g., ``Wait, maybe using Python here is a good idea.'') during the inference process of a LRM effectively stimulates its ability to utilize external tools without the need for any demonstration data. Hint-infer can also serve as a simple and effective sequential test-time scaling method; 2) Hint Rejection Sampling Fine-Tuning (Hint-RFT): Hint-RFT combines Hint-infer and RFT by scoring, filtering, and modifying the reasoning trajectories with tool invocation generated by a LRM via Hint-infer, followed by fine-tuning the LRM. Through this framework, we have fine-tuned the QwQ-32B model to achieve START. On PhD-level science QA (GPQA), competition-level math benchmarks (AMC23, AIME24, AIME25), and the competition-level code benchmark (LiveCodeBench), START achieves accuracy rates of 63.6%, 95.0%, 66.7%, 47.1%, and 47.3%, respectively. It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B and the proprietary model o1-Preview.
Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models
Dong, Guanting, Lu, Keming, Li, Chengpeng, Xia, Tingyu, Yu, Bowen, Zhou, Chang, Zhou, Jingren
One core capability of large language models (LLMs) is to follow natural language instructions. However, the issue of automatically constructing high-quality training data to enhance the complex instruction-following abilities of LLMs without manual annotation remains unresolved. IF transforms the validation of instruction-following data quality into code verification, requiring LLMs to generate instructions, the corresponding code to check the correctness of the instruction responses, and unit test samples to verify the code's correctness. Then, execution feedbackbased rejection sampling can generate data for Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) training. IF achieves significant improvements across three training algorithms, SFT, Offline DPO, and Online DPO, when applied to the top open-source LLMs, Qwen2 and LLaMA3, in self-alignment and strong-to-weak distillation settings. Our code is publicly available at https://github.com/QwenLM/AutoIF. Keep your response under 20 characters in length. Are you familiar with OET or Occupational English Test? What is the weather like today? Response 2:The weather is sunny and it Response Response 2:Yes, I'm familiar with OET. The instruction-following ability of large language models (LLMs) refers to their capacity to understand, interpret, and execute commands given to them in natural language (Lou et al., 2023; OpenAI et al., 2024). This ability is fundamental to contemporary LLMs as it enables them to leverage their underlying knowledge, interact intuitively with users (Ouyang et al., 2022), adapt to various requirements (Zhang et al., 2023), and perform complex tasks (Sun et al., 2024).
DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning
Li, Chengpeng, Dong, Guanting, Xue, Mingfeng, Peng, Ru, Wang, Xiang, Liu, Dayiheng
Large language models (LLMs) have made impressive progress in handling simple math problems, yet they still struggle with more challenging and complex mathematical tasks. In this paper, we introduce a series of LLMs that employs the Decomposition of thought with code assistance and self-correction for mathematical reasoning, dubbed as DotaMath. DotaMath models tackle complex mathematical tasks by decomposing them into simpler logical subtasks, leveraging code to solve these subtasks, obtaining fine-grained feedback from the code interpreter, and engaging in self-reflection and correction. By annotating diverse interactive tool-use trajectories and employing query evolution on GSM8K and MATH datasets, we generate an instruction fine-tuning dataset called DotaMathQA with 574K query-response pairs. We train a series of base LLMs using imitation learning on DotaMathQA, resulting in DotaMath models that achieve remarkable performance compared to open-source LLMs across various in-domain and out-of-domain benchmarks. Notably, DotaMath-deepseek-7B showcases an outstanding performance of 64.8% on the competitive MATH dataset and 86.7% on GSM8K. Besides, DotaMath-deepseek-7B maintains strong competitiveness on a series of in-domain and out-of-domain benchmarks (Avg. 80.1%). Looking forward, we anticipate that the DotaMath paradigm will open new pathways for addressing intricate mathematical problems. Our code is publicly available at https://github.com/ChengpengLi1003/DotaMath.
Qwen2 Technical Report
Yang, An, Yang, Baosong, Hui, Binyuan, Zheng, Bo, Yu, Bowen, Zhou, Chang, Li, Chengpeng, Li, Chengyuan, Liu, Dayiheng, Huang, Fei, Dong, Guanting, Wei, Haoran, Lin, Huan, Tang, Jialong, Wang, Jialin, Yang, Jian, Tu, Jianhong, Zhang, Jianwei, Ma, Jianxin, Yang, Jianxin, Xu, Jin, Zhou, Jingren, Bai, Jinze, He, Jinzheng, Lin, Junyang, Dang, Kai, Lu, Keming, Chen, Keqin, Yang, Kexin, Li, Mei, Xue, Mingfeng, Ni, Na, Zhang, Pei, Wang, Peng, Peng, Ru, Men, Rui, Gao, Ruize, Lin, Runji, Wang, Shijie, Bai, Shuai, Tan, Sinan, Zhu, Tianhang, Li, Tianhao, Liu, Tianyu, Ge, Wenbin, Deng, Xiaodong, Zhou, Xiaohuan, Ren, Xingzhang, Zhang, Xinyu, Wei, Xipin, Ren, Xuancheng, Liu, Xuejing, Fan, Yang, Yao, Yang, Zhang, Yichang, Wan, Yu, Chu, Yunfei, Liu, Yuqiong, Cui, Zeyu, Zhang, Zhenru, Guo, Zhifang, Fan, Zhihao
This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Dong, Guanting, Yuan, Hongyi, Lu, Keming, Li, Chengpeng, Xue, Mingfeng, Liu, Dayiheng, Wang, Wei, Yuan, Zheng, Zhou, Chang, Zhou, Jingren
Large language models (LLMs) with enormous pre-training tokens and parameters emerge diverse abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). While the open-source community has explored ad-hoc SFT for enhancing individual capabilities, proprietary LLMs exhibit versatility across various skills. Therefore, understanding the facilitation of multiple abilities via SFT is paramount. In this study, we specifically focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. We propose four intriguing research questions to explore the association between model performance and various factors including data amount, composition ratio, model size and SFT strategies. Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data. Mathematical reasoning and code generation consistently improve with increasing data amount, whereas general abilities plateau after roughly a thousand samples. Moreover, we observe data composition appears to enhance various abilities under limited data conditions, yet can lead to performance conflicts when data is plentiful. Our findings also suggest the amount of composition data influences performance more than the composition ratio. In analysis of SFT strategies, we find that sequentially learning multiple skills risks catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy offers a promising solution to learn multiple abilities with different scaling patterns.
Query and Response Augmentation Cannot Help Out-of-domain Math Reasoning Generalization
Li, Chengpeng, Yuan, Zheng, Yuan, Hongyi, Dong, Guanting, Lu, Keming, Wu, Jiancan, Tan, Chuanqi, Wang, Xiang, Zhou, Chang
In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks? To this end, we create a new dataset, AugGSM8K, by complicating and diversifying the queries from GSM8K and sampling multiple reasoning paths. We obtained a series of LLMs called MuggleMath by fine-tuning on subsets of AugGSM8K. MuggleMath substantially achieves new state-of-the-art on GSM8K (from 54% to 68.4% at the scale of 7B, and from 63.9% to 74.0% at the scale of 13B). A log-linear relationship is presented between MuggleMath's performance and the amount of augmented data. We also find that MuggleMath is weak in out-of-domain math reasoning generalization to MATH. This is attributed to the differences in query distribution between AugGSM8K and MATH which suggest that augmentation on a single benchmark could not help with overall math reasoning performance. Codes and AugGSM8K will be uploaded to https://github.com/OFA-Sys/gsm8k-ScRel.
Model-enhanced Contrastive Reinforcement Learning for Sequential Recommendation
Li, Chengpeng, Yang, Zhengyi, Zhang, Jizhi, Wu, Jiancan, Wang, Dingxian, He, Xiangnan, Wang, Xiang
Reinforcement learning (RL) has been widely applied in recommendation systems due to its potential in optimizing the long-term engagement of users. From the perspective of RL, recommendation can be formulated as a Markov decision process (MDP), where recommendation system (agent) can interact with users (environment) and acquire feedback (reward signals).However, it is impractical to conduct online interactions with the concern on user experience and implementation complexity, and we can only train RL recommenders with offline datasets containing limited reward signals and state transitions. Therefore, the data sparsity issue of reward signals and state transitions is very severe, while it has long been overlooked by existing RL recommenders.Worse still, RL methods learn through the trial-and-error mode, but negative feedback cannot be obtained in implicit feedback recommendation tasks, which aggravates the overestimation problem of offline RL recommender. To address these challenges, we propose a novel RL recommender named model-enhanced contrastive reinforcement learning (MCRL). On the one hand, we learn a value function to estimate the long-term engagement of users, together with a conservative value learning mechanism to alleviate the overestimation problem.On the other hand, we construct some positive and negative state-action pairs to model the reward function and state transition function with contrastive learning to exploit the internal structure information of MDP. Experiments demonstrate that the proposed method significantly outperforms existing offline RL and self-supervised RL methods with different representative backbone networks on two real-world datasets.
Scaling Relationship on Learning Mathematical Reasoning with Large Language Models
Yuan, Zheng, Yuan, Hongyi, Li, Chengpeng, Dong, Guanting, Lu, Keming, Tan, Chuanqi, Zhou, Chang, Zhou, Jingren
Mathematical reasoning is a challenging task for large language models (LLMs), while the scaling relationship of it with respect to LLM capacity is under-explored. In this paper, we investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM. We find that pre-training loss is a better indicator of the model's performance than the model's parameter count. We apply supervised fine-tuning (SFT) with different amounts of supervised data and empirically find a log-linear relation between data amount and model performance, and we find better models improve less with enlarged supervised datasets. To augment more data samples for improving model performances without any human effort, we propose to apply Rejection sampling Fine-Tuning (RFT). RFT uses supervised models to generate and collect correct reasoning paths as augmented fine-tuning datasets. We find with augmented samples containing more distinct reasoning paths, RFT improves mathematical reasoning performance more for LLMs. We also find RFT brings more improvement for less performant LLMs. Furthermore, we combine rejection samples from multiple models which push LLaMA-7B to an accuracy of 49.3\% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9\% significantly.