Li, Chengkun
InkSight: Offline-to-Online Handwriting Conversion by Learning to Read and Write
Mitrevski, Blagoj, Rak, Arina, Schnitzler, Julian, Li, Chengkun, Maksai, Andrii, Berent, Jesse, Musat, Claudiu
Digital note-taking is gaining popularity, offering a durable, editable, and easily indexable way of storing notes in the vectorized form, known as digital ink. However, a substantial gap remains between this way of note-taking and traditional pen-and-paper note-taking, a practice still favored by a vast majority. Our work, InkSight, aims to bridge the gap by empowering physical note-takers to effortlessly convert their work (offline handwriting) to digital ink (online handwriting), a process we refer to as Derendering. Prior research on the topic has focused on the geometric properties of images, resulting in limited generalization beyond their training domains. Our approach combines reading and writing priors, allowing training a model in the absence of large amounts of paired samples, which are difficult to obtain. To our knowledge, this is the first work that effectively derenders handwritten text in arbitrary photos with diverse visual characteristics and backgrounds. Furthermore, it generalizes beyond its training domain into simple sketches. Our human evaluation reveals that 87% of the samples produced by our model on the challenging HierText dataset are considered as a valid tracing of the input image and 67% look like a pen trajectory traced by a human.
Modular Quantization-Aware Training: Increasing Accuracy by Decreasing Precision in 6D Object Pose Estimation
Javed, Saqib, Li, Chengkun, Price, Andrew, Hu, Yinlin, Salzmann, Mathieu
Edge applications, such as collaborative robotics and spacecraft rendezvous, demand efficient 6D object pose estimation on resource-constrained embedded platforms. Existing 6D pose estimation networks are often too large for such deployments, necessitating compression while maintaining reliable performance. To address this challenge, we introduce Modular Quantization-Aware Training (MQAT), an adaptive and mixed-precision quantization-aware training strategy that exploits the modular structure of modern 6D pose estimation architectures. MQAT guides a systematic gradated modular quantization sequence and determines module-specific bit precisions, leading to quantized models that outperform those produced by state-of-the-art uniform and mixed-precision quantization techniques. Our experiments showcase the generality of MQAT across datasets, architectures, and quantization algorithms. Remarkably, MQAT-trained quantized models achieve a significant accuracy boost (>7%) over the baseline full-precision network while reducing model size by a factor of 4x or more.
PyVBMC: Efficient Bayesian inference in Python
Huggins, Bobby, Li, Chengkun, Tobaben, Marlon, Aarnos, Mikko J., Acerbi, Luigi
PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for black-box computational models (Acerbi, 2018, 2020). VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy. Specifically, VBMC computes: - a flexible (non-Gaussian) approximate posterior distribution of the model parameters, from which statistics and posterior samples can be easily extracted; - an approximation of the model evidence or marginal likelihood, a metric used for Bayesian model selection. PyVBMC can be applied to any computational or statistical model with up to roughly 10-15 continuous parameters, with the only requirement that the user can provide a Python function that computes the target log likelihood of the model, or an approximation thereof (e.g., an estimate of the likelihood obtained via simulation or Monte Carlo methods). PyVBMC is particularly effective when the model takes more than about a second per evaluation, with dramatic speed-ups of 1-2 orders of magnitude when compared to traditional approximate inference methods. Extensive benchmarks on both artificial test problems and a large number of real models from the computational sciences, particularly computational and cognitive neuroscience, show that VBMC generally - and often vastly - outperforms alternative methods for sample-efficient Bayesian inference, and is applicable to both exact and simulator-based models (Acerbi, 2018, 2019, 2020). PyVBMC brings this state-of-the-art inference algorithm to Python, along with an easy-to-use Pythonic interface for running the algorithm and manipulating and visualizing its results.
Fast post-process Bayesian inference with Sparse Variational Bayesian Monte Carlo
Li, Chengkun, Clarté, Grégoire, Acerbi, Luigi
We introduce Sparse Variational Bayesian Monte Carlo (SVBMC), a method for fast "post-process" Bayesian inference for models with black-box and potentially noisy likelihoods. SVBMC reuses all existing target density evaluations -- for example, from previous optimizations or partial Markov Chain Monte Carlo runs -- to build a sparse Gaussian process (GP) surrogate model of the log posterior density. Uncertain regions of the surrogate are then refined via active learning as needed. Our work builds on the Variational Bayesian Monte Carlo (VBMC) framework for sample-efficient inference, with several novel contributions. First, we make VBMC scalable to a large number of pre-existing evaluations via sparse GP regression, deriving novel Bayesian quadrature formulae and acquisition functions for active learning with sparse GPs. Second, we introduce noise shaping, a general technique to induce the sparse GP approximation to focus on high posterior density regions. Third, we prove theoretical results in support of the SVBMC refinement procedure. We validate our method on a variety of challenging synthetic scenarios and real-world applications. We find that SVBMC consistently builds good posterior approximations by post-processing of existing model evaluations from different sources, often requiring only a small number of additional density evaluations.