Not enough data to create a plot.
Try a different view from the menu above.
Li, Ang
Are Smarter LLMs Safer? Exploring Safety-Reasoning Trade-offs in Prompting and Fine-Tuning
Li, Ang, Mo, Yichuan, Li, Mingjie, Wang, Yifei, Wang, Yisen
Large Language Models (LLMs) have demonstrated remarkable success across various NLP benchmarks. However, excelling in complex tasks that require nuanced reasoning and precise decision-making demands more than raw language proficiency--LLMs must reason, i.e., think logically, draw from past experiences, and synthesize information to reach conclusions and take action. To enhance reasoning abilities, approaches such as prompting and fine-tuning have been widely explored. While these methods have led to clear improvements in reasoning, their impact on LLM safety remains less understood. In this work, we investigate the interplay between reasoning and safety in LLMs. We highlight the latent safety risks that arise as reasoning capabilities improve, shedding light on previously overlooked vulnerabilities. At the same time, we explore how reasoning itself can be leveraged to enhance safety, uncovering potential mitigation strategies. By examining both the risks and opportunities in reasoning-driven LLM safety, our study provides valuable insights for developing models that are not only more capable but also more trustworthy in real-world deployments.
Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks
Li, Ang, Zhou, Yin, Raghuram, Vethavikashini Chithrra, Goldstein, Tom, Goldblum, Micah
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs). These attacks may extract private information or coerce the model into producing harmful outputs. In real-world deployments, LLMs are often part of a larger agentic pipeline including memory systems, retrieval, web access, and API calling. Such additional components introduce vulnerabilities that make these LLM-powered agents much easier to attack than isolated LLMs, yet relatively little work focuses on the security of LLM agents. In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents. We first provide a taxonomy of attacks categorized by threat actors, objectives, entry points, attacker observability, attack strategies, and inherent vulnerabilities of agent pipelines. We then conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities. Notably, our attacks are trivial to implement and require no understanding of machine learning.
Estimating Probabilities of Causation with Machine Learning Models
Wang, Shuai, Li, Ang
Probabilities of causation play a crucial role in modern decision-making. This paper addresses the challenge of predicting probabilities of causation for subpopulations with insufficient data using machine learning models. Tian and Pearl first defined and derived tight bounds for three fundamental probabilities of causation: the probability of necessity and sufficiency (PNS), the probability of sufficiency (PS), and the probability of necessity (PN). However, estimating these probabilities requires both experimental and observational distributions specific to each subpopulation, which are often unavailable or impractical to obtain with limited population-level data. We assume that the probabilities of causation for each subpopulation are determined by its characteristics. To estimate these probabilities for subpopulations with insufficient data, we propose using machine learning models that draw insights from subpopulations with sufficient data. Our evaluation of multiple machine learning models indicates that, given sufficient population-level data and an appropriate choice of machine learning model and activation function, PNS can be effectively predicted. Through simulation studies, we show that our multilayer perceptron (MLP) model with the Mish activation function achieves a mean absolute error (MAE) of approximately 0.02 in predicting PNS for 32,768 subpopulations using data from around 2,000 subpopulations.
Speculate, then Collaborate: Fusing Knowledge of Language Models during Decoding
Wang, Ziyao, Azmart, Muneeza, Li, Ang, Horesh, Raya, Yurochkin, Mikhail
Large Language Models (LLMs) often excel in specific domains but fall short in others due to the limitations of their training. Thus, enabling LLMs to solve problems collaboratively by integrating their complementary knowledge promises to improve their performance across domains. To realize this potential, we introduce a novel Collaborative Speculative Decoding (CoSD) algorithm that enables efficient LLM knowledge fusion at test time without requiring additional model training. CoSD employs a draft model to generate initial sequences and an easy-to-learn rule or decision tree to decide when to invoke an assistant model to improve these drafts. CoSD not only enhances knowledge fusion but also improves inference efficiency, is transferable across domains and models, and offers greater explainability. Experimental results demonstrate that CoSD improves accuracy by up to 10\% across benchmarks compared to existing methods, providing a scalable and effective solution for LLM-based applications
Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild
Zhao, Xinyu, Sun, Guoheng, Cai, Ruisi, Zhou, Yukun, Li, Pingzhi, Wang, Peihao, Tan, Bowen, He, Yexiao, Chen, Li, Liang, Yi, Chen, Beidi, Yuan, Binhang, Wang, Hongyi, Li, Ang, Wang, Zhangyang, Chen, Tianlong
As Large Language Models (LLMs) excel across tasks and specialized domains, scaling LLMs based on existing models has garnered significant attention, which faces the challenge of decreasing performance when combining disparate models. Various techniques have been proposed for the aggregation of pre-trained LLMs, including model merging, Mixture-of-Experts, and stacking. Despite their merits, a comprehensive comparison and synergistic application of them to a diverse model zoo is yet to be adequately addressed. In light of this research gap, this paper introduces Model-GLUE, a holistic LLM scaling guideline. First, our work starts with a benchmarking of existing LLM scaling techniques, especially selective merging, and variants of mixture. Utilizing the insights from the benchmark results, we formulate an optimal strategy for the selection and aggregation of a heterogeneous model zoo characterizing different architectures and initialization.Our methodology involves the clustering of mergeable models and optimal merging strategy selection, and the integration of clusters through a model mixture. Finally, evidenced by our experiments on a diverse Llama-2-based model zoo, Model-GLUE shows an average performance enhancement of 5.61%, achieved without additional training. Codes are available at: https://github.com/Model-GLUE/Model-GLUE.
Towards counterfactual fairness thorough auxiliary variables
Tian, Bowei, Wang, Ziyao, He, Shwai, Ye, Wanghao, Sun, Guoheng, Dai, Yucong, Wu, Yongkai, Li, Ang
The challenge of balancing fairness and predictive accuracy in machine learning models, especially when sensitive attributes such as race, gender, or age are considered, has motivated substantial research in recent years. Counterfactual fairness ensures that predictions remain consistent across counterfactual variations of sensitive attributes, which is a crucial concept in addressing societal biases. However, existing counterfactual fairness approaches usually overlook intrinsic information about sensitive features, limiting their ability to achieve fairness while simultaneously maintaining performance. To tackle this challenge, we introduce EXOgenous Causal reasoning (EXOC), a novel causal reasoning framework motivated by exogenous variables. It leverages auxiliary variables to uncover intrinsic properties that give rise to sensitive attributes. Our framework explicitly defines an auxiliary node and a control node that contribute to counterfactual fairness and control the information flow within the model. Our evaluation, conducted on synthetic and real-world datasets, validates EXOC's superiority, showing that it outperforms state-of-the-art approaches in achieving counterfactual fairness.
One Communication Round is All It Needs for Federated Fine-Tuning Foundation Models
Wang, Ziyao, Tian, Bowei, He, Yexiao, Shen, Zheyu, Liu, Luyang, Li, Ang
The recent advancement of large foundation models (FMs) has increased the demand for fine-tuning these models on large-scale and cross-domain datasets. To address this, federated fine-tuning has emerged as a solution, allowing models to be fine-tuned on distributed datasets across multiple devices while ensuring data privacy. However, the substantial parameter size of FMs and the multi-round communication required by traditional federated fine-tuning algorithms result in prohibitively high communication costs, challenging the practicality of federated fine-tuning. In this paper, we are the first to reveal, both theoretically and empirically, that the traditional multi-round aggregation algorithms may not be necessary for federated fine-tuning large FMs. Our experiments reveal that a single round of communication (i.e., one-shot federated fine-tuning) yields a global model performance comparable to that achieved through multiple rounds of communication. Through rigorous mathematical and empirical analyses, we demonstrate that large FMs, due to their extensive parameter sizes and pre-training on general tasks, achieve significantly lower training loss in one-shot federated fine-tuning compared to smaller models. Our extensive experiments show that one-shot federated fine-tuning not only reduces communication costs but also enables asynchronous aggregation, enhances privacy, and maintains performance consistency with multi-round federated fine-tuning for models larger than 1 billion parameters, on text generation and text-to-image generation tasks. Our findings have the potential to revolutionize federated fine-tuning in practice, enhancing efficiency, reducing costs, and expanding accessibility for large-scale models. This breakthrough paves the way for broader adoption and application of federated fine-tuning across various domains.
t-READi: Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving
Hu, Pengfei, Qian, Yuhang, Zheng, Tianyue, Li, Ang, Chen, Zhe, Gao, Yue, Cheng, Xiuzhen, Luo, Jun
Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
He, Shwai, Ge, Tao, Sun, Guoheng, Tian, Bowei, Wang, Xiaoyang, Li, Ang, Yu, Dong
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) \textit{high training costs due to the need to train the entire model along with the routers that determine which layers to skip}, and (2) \textit{the risk of performance degradation when important layers are bypassed}. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys \textit{Attention with Dynamic Depths}. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at \url{https://github.com/CASE-Lab-UMD/Router-Tuning}.
Light-Weight Fault Tolerant Attention for Large Language Model Training
Liang, Yuhang, Li, Xinyi, Ren, Jie, Li, Ang, Fang, Bo, Chen, Jieyang
Large Language Models (LLMs) have demonstrated remarkable performance in various natural language processing tasks. However, the training of these models is computationally intensive and susceptible to faults, particularly in the attention mechanism, which is a critical component of transformer-based LLMs. In this paper, we investigate the impact of faults on LLM training, focusing on INF, NaN, and near-INF values in the computation results with systematic fault injection experiments. We observe the propagation patterns of these errors, which can trigger non-trainable states in the model and disrupt training, forcing the procedure to load from checkpoints. To mitigate the impact of these faults, we propose ATTNChecker, the first Algorithm-Based Fault Tolerance (ABFT) technique tailored for the attention mechanism in LLMs. ATTNChecker is designed based on fault propagation patterns of LLM and incorporates performance optimization to adapt to both system reliability and model vulnerability while providing lightweight protection for fast LLM training. Evaluations on four LLMs show that ATTNChecker on average incurs on average 7% overhead on training while detecting and correcting all extreme errors. Compared with the state-of-the-art checkpoint/restore approach, ATTNChecker reduces recovery overhead by up to 49x.