Goto

Collaborating Authors

 Lerman, Kristina


Capturing Perspectives of Crowdsourced Annotators in Subjective Learning Tasks

arXiv.org Artificial Intelligence

In most classification models, it has been assumed to have a single ground truth label for each data point. However, subjective tasks like toxicity classification can lead to genuine disagreement among annotators. In these cases aggregating labels will result in biased labeling and, consequently, biased models that can overlook minority opinions. Previous studies have shed light on the pitfalls of label aggregation and have introduced a handful of practical approaches to tackle this issue. Recently proposed multi-annotator models, which predict labels individually per annotator, are vulnerable to under-determination for annotators with small samples. This problem is especially the case in crowd-sourced datasets. In this work, we propose Annotator Aware Representations for Texts (AART) for subjective classification tasks. We will show the improvement of our method on metrics that assess the performance on capturing annotators' perspectives. Additionally, our approach involves learning representations for annotators, allowing for an exploration of the captured annotation behaviors.


Inducing Political Bias Allows Language Models Anticipate Partisan Reactions to Controversies

arXiv.org Artificial Intelligence

Social media platforms are rife with politically charged discussions. Therefore, accurately deciphering and predicting partisan biases using Large Language Models (LLMs) is increasingly critical. In this study, we address the challenge of understanding political bias in digitized discourse using LLMs. While traditional approaches often rely on finetuning separate models for each political faction, our work innovates by employing a singular, instruction-tuned LLM to reflect a spectrum of political ideologies. We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction, to evaluate the model's alignment with real-world political ideologies in terms of stances, emotions, and moral foundations. Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection, highlighting the intricacies and potential for refinement in NLP tools for politically sensitive contexts. This research contributes significantly to the field by demonstrating the feasibility and importance of nuanced political understanding in LLMs, particularly for applications requiring acute awareness of political bias.


ALCAP: Alignment-Augmented Music Captioner

arXiv.org Artificial Intelligence

Music captioning has gained significant attention in the wake of the rising prominence of streaming media platforms. Traditional approaches often prioritize either the audio or lyrics aspect of the music, inadvertently ignoring the intricate interplay between the two. However, a comprehensive understanding of music necessitates the integration of both these elements. In this study, we delve into this overlooked realm by introducing a method to systematically learn multimodal alignment between audio and lyrics through contrastive learning. This not only recognizes and emphasizes the synergy between audio and lyrics but also paves the way for models to achieve deeper cross-modal coherence, thereby producing high-quality captions. We provide both theoretical and empirical results demonstrating the advantage of the proposed method, which achieves new state-of-the-art on two music captioning datasets.


Discovering collective narratives shifts in online discussions

arXiv.org Artificial Intelligence

Narrative is a foundation of human cognition and decision making. Because narratives play a crucial role in societal discourses and spread of misinformation and because of the pervasive use of social media, the narrative dynamics on social media can have profound societal impact. Yet, systematic and computational understanding of online narratives faces critical challenge of the scale and dynamics; how can we reliably and automatically extract narratives from massive amount of texts? How do narratives emerge, spread, and die? Here, we propose a systematic narrative discovery framework that fill this gap by combining change point detection, semantic role labeling (SRL), and automatic aggregation of narrative fragments into narrative networks. We evaluate our model with synthetic and empirical data two-Twitter corpora about COVID-19 and 2017 French Election. Results demonstrate that our approach can recover major narrative shifts that correspond to the major events.


CPL-NoViD: Context-Aware Prompt-based Learning for Norm Violation Detection in Online Communities

arXiv.org Artificial Intelligence

Detecting norm violations in online communities is critical to maintaining healthy and safe spaces for online discussions. Existing machine learning approaches often struggle to adapt to the diverse rules and interpretations across different communities due to the inherent challenges of fine-tuning models for such context-specific tasks. In this paper, we introduce Context-aware Prompt-based Learning for Norm Violation Detection (CPL-NoViD), a novel method that employs prompt-based learning to detect norm violations across various types of rules. CPL-NoViD outperforms the baseline by incorporating context through natural language prompts and demonstrates improved performance across different rule types. Significantly, it not only excels in cross-rule-type and cross-community norm violation detection but also exhibits adaptability in few-shot learning scenarios. Most notably, it establishes a new state-of-the-art in norm violation detection, surpassing existing benchmarks. Our work highlights the potential of prompt-based learning for context-sensitive norm violation detection and paves the way for future research on more adaptable, context-aware models to better support online community moderators.


A Data Fusion Framework for Multi-Domain Morality Learning

arXiv.org Artificial Intelligence

Language models can be trained to recognize the moral sentiment of text, creating new opportunities to study the role of morality in human life. As interest in language and morality has grown, several ground truth datasets with moral annotations have been released. However, these datasets vary in the method of data collection, domain, topics, instructions for annotators, etc. Simply aggregating such heterogeneous datasets during training can yield models that fail to generalize well. We describe a data fusion framework for training on multiple heterogeneous datasets that improve performance and generalizability. The model uses domain adversarial training to align the datasets in feature space and a weighted loss function to deal with label shift. We show that the proposed framework achieves state-of-the-art performance in different datasets compared to prior works in morality inference.


Zero-shot meta-learning for small-scale data from human subjects

arXiv.org Artificial Intelligence

Abstract--While developments in machine learning led to impressive performance gains on big data, many human subjects data are, in actuality, small and sparsely labeled. Existing methods applied to such data often do not easily generalize to out-of-sample subjects. Instead, models must make predictions on test data that may be drawn from a different distribution, a problem known as zero-shot learning. To address this challenge, we develop an end-to-end framework using a meta-learning approach, which enables the model to rapidly adapt to a new prediction task with limited training data for out-of-sample test data. We use three real-world small-scale human subjects datasets (two randomized control studies and one observational study), for which we predict treatment outcomes for held-out treatment groups. Our model learns the latent treatment effects of each intervention and, by design, can naturally handle multitask predictions. However, these methods have had limited success in I. Though such studies remain the gold standard large amount of labeled data yet have limited capacity for of scientific discovery [1], [3], many are small and sparsely transferring knowledge [14], [15], hindering their ability to labeled due to regulatory challenges, ethical considerations generalize to complex yet small human subjects datasets and [4], data availability (e.g., investigating rare diseases [3]), tasks [16].


Leveraging Label Correlations in a Multi-label Setting: A Case Study in Emotion

arXiv.org Artificial Intelligence

Detecting emotions expressed in text has become critical to a range of fields. In this work, we investigate ways to exploit label correlations in multi-label emotion recognition models to improve emotion detection. First, we develop two modeling approaches to the problem in order to capture word associations of the emotion words themselves, by either including the emotions in the input, or by leveraging Masked Language Modeling (MLM). Second, we integrate pairwise constraints of emotion representations as regularization terms alongside the classification loss of the models. We split these terms into two categories, local and global. The former dynamically change based on the gold labels, while the latter remain static during training. We demonstrate state-of-the-art performance across Spanish, English, and Arabic in SemEval 2018 Task 1 E-c using monolingual BERT-based models. On top of better performance, we also demonstrate improved robustness. Code is available at https://github.com/gchochla/Demux-MEmo.


Using Emotion Embeddings to Transfer Knowledge Between Emotions, Languages, and Annotation Formats

arXiv.org Artificial Intelligence

The need for emotional inference from text continues to diversify as more and more disciplines integrate emotions into their theories and applications. These needs include inferring different emotion types, handling multiple languages, and different annotation formats. A shared model between different configurations would enable the sharing of knowledge and a decrease in training costs, and would simplify the process of deploying emotion recognition models in novel environments. In this work, we study how we can build a single model that can transition between these different configurations by leveraging multilingual models and Demux, a transformer-based model whose input includes the emotions of interest, enabling us to dynamically change the emotions predicted by the model. Demux also produces emotion embeddings, and performing operations on them allows us to transition to clusters of emotions by pooling the embeddings of each cluster. We show that Demux can simultaneously transfer knowledge in a zero-shot manner to a new language, to a novel annotation format and to unseen emotions. Code is available at https://github.com/gchochla/Demux-MEmo .


Data-Driven Estimation of Heterogeneous Treatment Effects

arXiv.org Artificial Intelligence

Estimating the effect of a treatment on an outcome is a fundamental problem in many fields such as medicine [33, 34, 61], public policy [20] and more [2, 37]. For example, doctors might be interested in how a treatment, such as a drug, affects the recovery of patients [18], economists may be interested in how a job training program affects employment prospectives [35], and advertisers may want to model the average effect an advertisement has on sales [36]. However, individuals may react differently to the treatment of interest, and knowing only the average treatment effect in the population is insufficient. For example, a drug may have adverse effects on some individuals but not others [61], or a person's education and background may affect how much they benefit from job training [35, 50]. Measuring the extent to which different individuals react differently to treatment is known as heterogeneous treatment effect (HTE) estimation. Traditionally, HTE estimation has been done through subgroup analysis [9, 19]. However, this can lead to cherry-picking since the practitioner is the one who identifies subgroups for estimating effects. Recently, there has been more focus on data-driven estimation of heterogeneous treatment effects by letting the data identify which features are important for treatment effect estimation using machine learning techniques [28, 39, 61, 69]. A straightforward approach is to create interaction terms between all covariates and use them in a regression [6].