Leonarduzzi, Roberto
Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra
Morel, Rudy, Rochette, Gaspar, Leonarduzzi, Roberto, Bouchaud, Jean-Philippe, Mallat, Stéphane
We introduce the wavelet scattering spectra which provide non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients and their modulus. This correlation matrix is nearly diagonalized by a second wavelet transform, which defines the scattering spectra. We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. We prove that self-similar processes have scattering spectra which are scale invariant. This property can be tested statistically on a single realization and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering spectra coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.
Kymatio: Scattering Transforms in Python
Andreux, Mathieu, Angles, Tomás, Exarchakis, Georgios, Leonarduzzi, Roberto, Rochette, Gaspar, Thiry, Louis, Zarka, John, Mallat, Stéphane, Andén, Joakim, Belilovsky, Eugene, Bruna, Joan, Lostanlen, Vincent, Hirn, Matthew J., Oyallon, Edouard, Zhang, Sixhin, Cella, Carmine, Eickenberg, Michael
The wavelet scattering transform is an invariant signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All transforms may be executed on a GPU (in addition to CPU), offering a considerable speed up over CPU implementations. The package also has a small memory footprint, resulting inefficient memory usage. The source code, documentation, and examples are available undera BSD license at https://www.kymat.io/