Lensen, Andrew
Genetic Programming for Explainable Manifold Learning
Cravens, Ben, Lensen, Andrew, Maddigan, Paula, Xue, Bing
Manifold learning techniques play a pivotal role in machine learning by revealing lower-dimensional embeddings within high-dimensional data, thus enhancing both the efficiency and interpretability of data analysis by transforming the data into a lower-dimensional representation. However, a notable challenge with current manifold learning methods is their lack of explicit functional mappings, crucial for explainability in many real-world applications. Genetic programming, known for its interpretable functional tree-based models, has emerged as a promising approach to address this challenge. Previous research leveraged multi-objective GP to balance manifold quality against embedding dimensionality, producing functional mappings across a range of embedding sizes. Yet, these mapping trees often became complex, hindering explainability. In response, in this paper, we introduce Genetic Programming for Explainable Manifold Learning (GP-EMaL), a novel approach that directly penalises tree complexity. Our new method is able to maintain high manifold quality while significantly enhancing explainability and also allows customisation of complexity measures, such as symmetry balancing, scaling, and node complexity, catering to diverse application needs. Our experimental analysis demonstrates that GP-EMaL is able to match the performance of the existing approach in most cases, while using simpler, smaller, and more interpretable tree structures. This advancement marks a significant step towards achieving interpretable manifold learning.
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Zeng, Peng, Song, Xiaotian, Lensen, Andrew, Ou, Yuwei, Sun, Yanan, Zhang, Mengjie, Lv, Jiancheng
Symbolic regression (SR) is the process of discovering hidden relationships from data with mathematical expressions, which is considered an effective way to reach interpretable machine learning (ML). Genetic programming (GP) has been the dominator in solving SR problems. However, as the scale of SR problems increases, GP often poorly demonstrates and cannot effectively address the real-world high-dimensional problems. This limitation is mainly caused by the stochastic evolutionary nature of traditional GP in constructing the trees. In this paper, we propose a differentiable approach named DGP to construct GP trees towards high-dimensional SR for the first time. Specifically, a new data structure called differentiable symbolic tree is proposed to relax the discrete structure to be continuous, thus a gradient-based optimizer can be presented for the efficient optimization. In addition, a sampling method is proposed to eliminate the discrepancy caused by the above relaxation for valid symbolic expressions. Furthermore, a diversification mechanism is introduced to promote the optimizer escaping from local optima for globally better solutions. With these designs, the proposed DGP method can efficiently search for the GP trees with higher performance, thus being capable of dealing with high-dimensional SR. To demonstrate the effectiveness of DGP, we conducted various experiments against the state of the arts based on both GP and deep neural networks. The experiment results reveal that DGP can outperform these chosen peer competitors on high-dimensional regression benchmarks with dimensions varying from tens to thousands. In addition, on the synthetic SR problems, the proposed DGP method can also achieve the best recovery rate even with different noisy levels. It is believed this work can facilitate SR being a powerful alternative to interpretable ML for a broader range of real-world problems.
Feature-based Image Matching for Identifying Individual K\=ak\=a
O'Sullivan, Fintan, Escott, Kirita-Rose, Shaw, Rachael C., Lensen, Andrew
This report investigates an unsupervised, feature-based image matching pipeline for the novel application of identifying individual k\=ak\=a. Applied with a similarity network for clustering, this addresses a weakness of current supervised approaches to identifying individual birds which struggle to handle the introduction of new individuals to the population. Our approach uses object localisation to locate k\=ak\=a within images and then extracts local features that are invariant to rotation and scale. These features are matched between images with nearest neighbour matching techniques and mismatch removal to produce a similarity score for image match comparison. The results show that matches obtained via the image matching pipeline achieve high accuracy of true matches. We conclude that feature-based image matching could be used with a similarity network to provide a viable alternative to existing supervised approaches.
Genetic Programming for Manifold Learning: Preserving Local Topology
Lensen, Andrew, Xue, Bing, Zhang, Mengjie
Manifold learning methods are an invaluable tool in today's world of increasingly huge datasets. Manifold learning algorithms can discover a much lower-dimensional representation (embedding) of a high-dimensional dataset through non-linear transformations that preserve the most important structure of the original data. State-of-the-art manifold learning methods directly optimise an embedding without mapping between the original space and the discovered embedded space. This makes interpretability - a key requirement in exploratory data analysis - nearly impossible. Recently, genetic programming has emerged as a very promising approach to manifold learning by evolving functional mappings from the original space to an embedding. However, genetic programming-based manifold learning has struggled to match the performance of other approaches. In this work, we propose a new approach to using genetic programming for manifold learning, which preserves local topology. This is expected to significantly improve performance on tasks where local neighbourhood structure (topology) is paramount. We compare our proposed approach with various baseline manifold learning methods and find that it often outperforms other methods, including a clear improvement over previous genetic programming approaches. These results are particularly promising, given the potential interpretability and reusability of the evolved mappings.
Mining Feature Relationships in Data
Lensen, Andrew
When faced with a new dataset, most practitioners begin by performing exploratory data analysis to discover interesting patterns and characteristics within data. Techniques such as association rule mining are commonly applied to uncover relationships between features (attributes) of the data. However, association rules are primarily designed for use on binary or categorical data, due to their use of rule-based machine learning. A large proportion of real-world data is continuous in nature, and discretisation of such data leads to inaccurate and less informative association rules. In this paper, we propose an alternative approach called feature relationship mining (FRM), which uses a genetic programming approach to automatically discover symbolic relationships between continuous or categorical features in data. To the best of our knowledge, our proposed approach is the first such symbolic approach with the goal of explicitly discovering relationships between features. Empirical testing on a variety of real-world datasets shows the proposed method is able to find high-quality, simple feature relationships which can be easily interpreted and which provide clear and non-trivial insight into data.
Generating Redundant Features with Unsupervised Multi-Tree Genetic Programming
Lensen, Andrew, Xue, Bing, Zhang, Mengjie
Recently, feature selection has become an increasingly important area of research due to the surge in high-dimensional datasets in all areas of modern life. A plethora of feature selection algorithms have been proposed, but it is difficult to truly analyse the quality of a given algorithm. Ideally, an algorithm would be evaluated by measuring how well it removes known bad features. Acquiring datasets with such features is inherently difficult, and so a common technique is to add synthetic bad features to an existing dataset. While adding noisy features is an easy task, it is very difficult to automatically add complex, redundant features. This work proposes one of the first approaches to generating redundant features, using a novel genetic programming approach. Initial experiments show that our proposed method can automatically create difficult, redundant features which have the potential to be used for creating high-quality feature selection benchmark datasets. Keywords: Genetic Programming, Feature Creation, Feature Construction, Feature Selection, Mutual Information, Evolutionary Computation 1 Introduction Feature Selection (FS) techniques aim to remove features from a dataset which are less useful than others.