Lei, Yu
ZiGong 1.0: A Large Language Model for Financial Credit
Lei, Yu, Wang, Zixuan, Liu, Chu, Wang, Tongyao
Large Language Models (LLMs) have demonstrated strong performance across various general Natural Language Processing (NLP) tasks. However, their effectiveness in financial credit assessment applications remains suboptimal, primarily due to the specialized financial expertise required for these tasks. To address this limitation, we propose ZiGong, a Mistral-based model enhanced through multi-task supervised fine-tuning. To specifically combat model hallucination in financial contexts, we introduce a novel data pruning methodology. Our approach utilizes a proxy model to score training samples, subsequently combining filtered data with original datasets for model training. This data refinement strategy effectively reduces hallucinations in LLMs while maintaining reliability in downstream financial applications. Experimental results show our method significantly enhances model robustness and prediction accuracy in real-world financial scenarios.
Correcting Large Language Model Behavior via Influence Function
Zhang, Han, Zhang, Zhuo, Zhang, Yi, Zhai, Yuanzhao, Peng, Hanyang, Lei, Yu, Yu, Yue, Wang, Hui, Liang, Bin, Gui, Lin, Xu, Ruifeng
Recent advancements in AI alignment techniques have significantly improved the alignment of large language models (LLMs) with static human preferences. However, the dynamic nature of human preferences can render some prior training data outdated or even erroneous, ultimately causing LLMs to deviate from contemporary human preferences and societal norms. Existing methodologies, whether they involve the curation of new data for continual alignment or the manual correction of outdated data for re-alignment, demand costly human resources. To address this challenge, we propose a novel approach, Large Language Model Behavior Correction with Influence Function Recall and Post-Training (LANCET), which requires no human involvement. LANCET consists of two phases: (1) using influence functions to identify the training data that significantly impact undesirable model outputs, and (2) applying an Influence function-driven Bregman Optimization (IBO) technique to adjust the model's behavior based on these influence distributions. Our experiments demonstrate that LANCET effectively and efficiently correct inappropriate behaviors of LLMs. Furthermore, LANCET can outperform methods that rely on collecting human preferences, and it enhances the interpretability of learning human preferences within LLMs.
A Heterogeneous Graph Neural Network Fusing Functional and Structural Connectivity for MCI Diagnosis
Yin, Feiyu, Lei, Yu, Dai, Siyuan, Zeng, Wenwen, Wu, Guoqing, Zhan, Liang, Yu, Jinhua
Brain connectivity alternations associated with brain disorders have been widely reported in resting-state functional imaging (rs-fMRI) and diffusion tensor imaging (DTI). While many dual-modal fusion methods based on graph neural networks (GNNs) have been proposed, they generally follow homogenous fusion ways ignoring rich heterogeneity of dual-modal information. To address this issue, we propose a novel method that integrates functional and structural connectivity based on heterogeneous graph neural networks (HGNNs) to better leverage the rich heterogeneity in dual-modal images. We firstly use blood oxygen level dependency and whiter matter structure information provided by rs-fMRI and DTI to establish homo-meta-path, capturing node relationships within the same modality. At the same time, we propose to establish hetero-meta-path based on structure-function coupling and brain community searching to capture relations among cross-modal nodes. Secondly, we further introduce a heterogeneous graph pooling strategy that automatically balances homo- and hetero-meta-path, effectively leveraging heterogeneous information and preventing feature confusion after pooling. Thirdly, based on the flexibility of heterogeneous graphs, we propose a heterogeneous graph data augmentation approach that can conveniently address the sample imbalance issue commonly seen in clinical diagnosis. We evaluate our method on ADNI-3 dataset for mild cognitive impairment (MCI) diagnosis. Experimental results indicate the proposed method is effective and superior to other algorithms, with a mean classification accuracy of 93.3%.
FairMindSim: Alignment of Behavior, Emotion, and Belief in Humans and LLM Agents Amid Ethical Dilemmas
Lei, Yu, Liu, Hao, Xie, Chengxing, Liu, Songjia, Yin, Zhiyu, Chen, Canyu, Li, Guohao, Torr, Philip, Wu, Zhen
AI alignment is a pivotal issue concerning AI control and safety. It should consider not only value-neutral human preferences but also moral and ethical considerations. In this study, we introduced FairMindSim, which simulates the moral dilemma through a series of unfair scenarios. We used LLM agents to simulate human behavior, ensuring alignment across various stages. To explore the various socioeconomic motivations, which we refer to as beliefs, that drive both humans and LLM agents as bystanders to intervene in unjust situations involving others, and how these beliefs interact to influence individual behavior, we incorporated knowledge from relevant sociological fields and proposed the Belief-Reward Alignment Behavior Evolution Model (BREM) based on the recursive reward model (RRM). Our findings indicate that, behaviorally, GPT-4o exhibits a stronger sense of social justice, while humans display a richer range of emotions. Additionally, we discussed the potential impact of emotions on behavior. This study provides a theoretical foundation for applications in aligning LLMs with altruistic values. As large language models (LLMs), also known as foundational models, increasingly engage in language comprehension and content generation tasks that resemble human capabilities, a critical and scientifically challenging question emerges: How can we ensure that these models' capabilities and behaviors align with human values, intentions, and ethical principles, thereby maintaining security and trust in human-AI collaborative processes Bengio et al. (2024)? These concerns have spurred research efforts in the field of AI alignment Bostrom (2013); Ord (2020); Bucknall & Dori-Hacohen (2022), which strives to develop AI systems that act in accordance with human intentions and values. This challenge extends across various domains, including economics, psychology Demszky et al. (2023), sociology Liu et al. (2024), and education.
FinLangNet: A Novel Deep Learning Framework for Credit Risk Prediction Using Linguistic Analogy in Financial Data
Lei, Yu, Wang, Zixuan, Liu, Chu, Wang, Tongyao, Lee, Dongyang
Recent industrial applications in risk prediction still heavily rely on extensively manually-tuned, statistical learning methods. Real-world financial data, characterized by its high dimensionality, sparsity, high noise levels, and significant imbalance, poses unique challenges for the effective application of deep neural network models. In this work, we introduce a novel deep learning risk prediction framework, FinLangNet, which conceptualizes credit loan trajectories in a structure that mirrors linguistic constructs. This framework is tailored for credit risk prediction using real-world financial data, drawing on structural similarities to language by adapting natural language processing techniques. It particularly emphasizes analyzing the development and forecastability of mid-term credit histories through multi-head and sequences of detailed financial events. Our research demonstrates that FinLangNet surpasses traditional statistical methods in predicting credit risk and that its integration with these methods enhances credit overdue prediction models, achieving a significant improvement of over 4.24\% in the Kolmogorov-Smirnov metric.
Bayesian Diffusion Models for 3D Shape Reconstruction
Xu, Haiyang, Lei, Yu, Chen, Zeyuan, Zhang, Xiang, Zhao, Yue, Wang, Yilin, Tu, Zhuowen
We present Bayesian Diffusion Models (BDM), a prediction algorithm that performs effective Bayesian inference by tightly coupling the top-down (prior) information with the bottom-up (data-driven) procedure via joint diffusion processes. We show the effectiveness of BDM on the 3D shape reconstruction task. Compared to prototypical deep learning data-driven approaches trained on paired (supervised) data-labels (e.g. image-point clouds) datasets, our BDM brings in rich prior information from standalone labels (e.g. point clouds) to improve the bottom-up 3D reconstruction. As opposed to the standard Bayesian frameworks where explicit prior and likelihood are required for the inference, BDM performs seamless information fusion via coupled diffusion processes with learned gradient computation networks. The specialty of our BDM lies in its capability to engage the active and effective information exchange and fusion of the top-down and bottom-up processes where each itself is a diffusion process. We demonstrate state-of-the-art results on both synthetic and real-world benchmarks for 3D shape reconstruction.
Relationship Discovery for Drug Recommendation
Li, Xiang, Liang, Shunpan, Lei, Yu, Li, Chen, Hou, Yulei, Ma, Tengfei
Medication recommendation systems are designed to deliver personalized drug suggestions that are closely aligned with individual patient needs. Previous studies have primarily concentrated on developing medication embeddings, achieving significant progress. Nonetheless, these approaches often fall short in accurately reflecting individual patient profiles, mainly due to challenges in distinguishing between various patient conditions and the inability to establish precise correlations between specific conditions and appropriate medications. In response to these issues, we introduce DisMed, a model that focuses on patient conditions to enhance personalization. DisMed employs causal inference to discern clear, quantifiable causal links. It then examines patient conditions in depth, recognizing and adapting to the evolving nuances of these conditions, and mapping them directly to corresponding medications. Additionally, DisMed leverages data from multiple patient visits to propose combinations of medications. Comprehensive testing on real-world datasets demonstrates that DisMed not only improves the customization of patient profiles but also surpasses leading models in both precision and safety.
Knowledge-Aware Multi-Intent Contrastive Learning for Multi-Behavior Recommendation
Liang, Shunpan, Zhao, Junjie, Li, Chen, Lei, Yu
Multi-behavioral recommendation optimizes user experiences by providing users with more accurate choices based on their diverse behaviors, such as view, add to cart, and purchase. Current studies on multi-behavioral recommendation mainly explore the connections and differences between multi-behaviors from an implicit perspective. Specifically, they directly model those relations using black-box neural networks. In fact, users' interactions with items under different behaviors are driven by distinct intents. For instance, when users view products, they tend to pay greater attention to information such as ratings and brands. However, when it comes to the purchasing phase, users become more price-conscious. To tackle this challenge and data sparsity problem in the multi-behavioral recommendation, we propose a novel model: Knowledge-Aware Multi-Intent Contrastive Learning (KAMCL) model. This model uses relationships in the knowledge graph to construct intents, aiming to mine the connections between users' multi-behaviors from the perspective of intents to achieve more accurate recommendations. KAMCL is equipped with two contrastive learning schemes to alleviate the data scarcity problem and further enhance user representations. Extensive experiments on three real datasets demonstrate the superiority of our model.
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
Miao, Yibo, Lei, Yu, Zhou, Feng, Deng, Zhijie
Low-shot image classification is a fundamental task in computer vision, and the emergence of large-scale vision-language models such as CLIP has greatly advanced the forefront of research in this field. However, most existing CLIP-based methods lack the flexibility to effectively incorporate other pre-trained models that encompass knowledge distinct from CLIP. To bridge the gap, this work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes, which have previously demonstrated remarkable efficacy in processing small data. We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function with an ensemble of deep kernels built upon various pre-trained models. By regressing the classification label directly, our framework enables analytical inference, straightforward uncertainty quantification, and principled hyper-parameter tuning. Through extensive experiments on standard benchmarks, we demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance. Additionally, we assess the robustness of our method and the quality of the yielded uncertainty estimates on out-of-distribution datasets. We also illustrate that our method, despite relying on label regression, still enjoys superior model calibration compared to most deterministic baselines.
FreeA: Human-object Interaction Detection using Free Annotation Labels
Wang, Yuxiao, Wei, Zhenao, Jiang, Xinyu, Lei, Yu, Xue, Weiying, Liu, Jinxiu, Liu, Qi
Recent human-object interaction (HOI) detection approaches rely on high cost of manpower and require comprehensive annotated image datasets. In this paper, we propose a novel self-adaption language-driven HOI detection method, termed as FreeA, without labeling by leveraging the adaptability of CLIP to generate latent HOI labels. To be specific, FreeA matches image features of human-object pairs with HOI text templates, and a priori knowledge-based mask method is developed to suppress improbable interactions. In addition, FreeA utilizes the proposed interaction correlation matching method to enhance the likelihood of actions related to a specified action, further refine the generated HOI labels. Experiments on two benchmark datasets show that FreeA achieves state-of-the-art performance among weakly supervised HOI models. Our approach is +8.58 mean Average Precision (mAP) on HICO-DET and +1.23 mAP on V-COCO more accurate in localizing and classifying the interactive actions than the newest weakly model, and +1.68 mAP and +7.28 mAP than the latest weakly+ model, respectively. Code will be available at https://drliuqi.github.io/.