Lei, Runlin
Exploring the Potential of Large Language Models as Predictors in Dynamic Text-Attributed Graphs
Lei, Runlin, Ji, Jiarui, Ding, Haipeng, Yi, Lu, Wei, Zhewei, Liu, Yongchao, Hong, Chuntao
With the rise of large language models (LLMs), there has been growing interest in Graph Foundation Models (GFMs) for graph-based tasks. By leveraging LLMs as predictors, GFMs have demonstrated impressive generalizability across various tasks and datasets. However, existing research on LLMs as predictors has predominantly focused on static graphs, leaving their potential in dynamic graph prediction unexplored. In this work, we pioneer using LLMs for predictive tasks on dynamic graphs. We identify two key challenges: the constraints imposed by context length when processing large-scale historical data and the significant variability in domain characteristics, both of which complicate the development of a unified predictor. To address these challenges, we propose the GraphAgent-Dynamic (GAD) Framework, a multi-agent system that leverages collaborative LLMs. In contrast to using a single LLM as the predictor, GAD incorporates global and local summary agents to generate domain-specific knowledge, enhancing its transferability across domains. Additionally, knowledge reflection agents enable adaptive updates to GAD's knowledge, maintaining a unified and self-consistent architecture. In experiments, GAD demonstrates performance comparable to or even exceeds that of full-supervised graph neural networks without dataset-specific training. Finally, to enhance the task-specific performance of LLM-based predictors, we discuss potential improvements, such as dataset-specific fine-tuning to LLMs. By developing tailored strategies for different tasks, we provide new insights for the future design of LLM-based predictors.
LLM-Based Multi-Agent Systems are Scalable Graph Generative Models
Ji, Jiarui, Lei, Runlin, Bi, Jialing, Wei, Zhewei, Chen, Xu, Lin, Yankai, Pan, Xuchen, Li, Yaliang, Ding, Bolin
The structural properties of naturally arising social graphs are extensively studied to understand their evolution. Prior approaches for modeling network dynamics typically rely on rule-based models, which lack realism and generalizability, or deep learning-based models, which require large-scale training datasets. Social graphs, as abstract graph representations of entity-wise interactions, present an opportunity to explore network evolution mechanisms through realistic simulations of human-item interactions. Leveraging the pre-trained social consensus knowledge embedded in large language models (LLMs), we present GraphAgent-Generator (GAG), a novel simulation-based framework for dynamic, text-attributed social graph generation. GAG simulates the temporal node and edge generation processes for zero-shot social graph generation. The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics. Through the node classification benchmarking task, we validate GAG effectively captures the intricate text-structure correlations in graph generation. Furthermore, GAG supports generating graphs with up to nearly 100,000 nodes or 10 million edges through large-scale LLM-based agent simulation with parallel acceleration, achieving a minimum speed-up of 90.4%. The source code is available at https://github.com/Ji-Cather/GraphAgent.
Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents
Hu, Yuwei, Lei, Runlin, Huang, Xinyi, Wei, Zhewei, Liu, Yongchao
Recent research has explored the use of Large Language Models (LLMs) for tackling complex graph reasoning tasks. However, due to the intricacies of graph structures and the inherent limitations of LLMs in handling long text, current approaches often fail to deliver satisfactory accuracy, even on small-scale graphs and simple tasks. To address these challenges, we introduce GraphAgent-Reasoner, a fine-tuning-free framework that utilizes a multi-agent collaboration strategy for explicit and precise graph reasoning. Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents. The agents collaborate to solve the overall problem, significantly reducing the amount of information and complexity handled by a single LLM, thus enhancing the accuracy of graph reasoning. By simply increasing the number of agents, GraphAgent-Reasoner can efficiently scale to accommodate larger graphs with over 1,000 nodes. Evaluated on the GraphInstruct dataset, our framework demonstrates near-perfect accuracy on polynomial-time graph reasoning tasks, significantly outperforming the best available models, both closed-source and fine-tuned open-source variants. Our framework also demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
Intruding with Words: Towards Understanding Graph Injection Attacks at the Text Level
Lei, Runlin, Hu, Yuwei, Ren, Yuchen, Wei, Zhewei
Graph Neural Networks (GNNs) excel across various applications but remain vulnerable to adversarial attacks, particularly Graph Injection Attacks (GIAs), which inject malicious nodes into the original graph and pose realistic threats. Text-attributed graphs (TAGs), where nodes are associated with textual features, are crucial due to their prevalence in real-world applications and are commonly used to evaluate these vulnerabilities. However, existing research only focuses on embedding-level GIAs, which inject node embeddings rather than actual textual content, limiting their applicability and simplifying detection. In this paper, we pioneer the exploration of GIAs at the text level, presenting three novel attack designs that inject textual content into the graph. Through theoretical and empirical analysis, we demonstrate that text interpretability, a factor previously overlooked at the embedding level, plays a crucial role in attack strength. Among the designs we investigate, the Word-frequency-based Text-level GIA (WTGIA) is particularly notable for its balance between performance and interpretability. Despite the success of WTGIA, we discover that defenders can easily enhance their defenses with customized text embedding methods or large language model (LLM)--based predictors. These insights underscore the necessity for further research into the potential and practical significance of text-level GIAs.
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
Lei, Runlin, Wang, Zhen, Li, Yaliang, Ding, Bolin, Wei, Zhewei
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning. Despite their extraordinary predictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs, rendering these models vulnerable to graph structural attacks and with limited capacity in generalizing to graphs of varied homophily levels. Although many methods have been proposed to improve the robustness of GNN models, the majority of these techniques are restricted to the spatial domain and employ complicated defense mechanisms, such as learning new graph structures or calculating edge attention. In this paper, we study the problem of designing simple and robust GNN models in the spectral domain. We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter. Based on our theoretical analysis in both spatial and spectral domains, we demonstrate that EvenNet outperforms full-order models in generalizing across homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors improves the robustness of GNNs. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet outperforms existing defense models against structural attacks without introducing additional computational costs and maintains competitiveness in traditional node classification tasks on homophilic and heterophilic graphs.