Goto

Collaborating Authors

 Lehalleur, Simon Pepin


You Are What You Eat -- AI Alignment Requires Understanding How Data Shapes Structure and Generalisation

arXiv.org Artificial Intelligence

In this position paper, we argue that understanding the relation between structure in the data distribution and structure in trained models is central to AI alignment. First, we discuss how two neural networks can have equivalent performance on the training set but compute their outputs in essentially different ways and thus generalise differently. For this reason, standard testing and evaluation are insufficient for obtaining assurances of safety for widely deployed generally intelligent systems. We argue that to progress beyond evaluation to a robust mathematical science of AI alignment, we need to develop statistical foundations for an understanding of the relation between structure in the data distribution, internal structure in models, and how these structures underlie generalisation.


Geometry of fibers of the multiplication map of deep linear neural networks

arXiv.org Machine Learning

We study the geometry of the algebraic set of tuples of composable matrices which multiply to a fixed matrix, using tools from the theory of quiver representations. In particular, we determine its codimension $C$ and the number $\theta$ of its top-dimensional irreducible components. Our solution is presented in three forms: a Poincar\'e series in equivariant cohomology, a quadratic integer program, and an explicit formula. In the course of the proof, we establish a surprising property: $C$ and $\theta$ are invariant under arbitrary permutations of the dimension vector. We also show that the real log-canonical threshold of the function taking a tuple to the square Frobenius norm of its product is $C/2$. These results are motivated by the study of deep linear neural networks in machine learning and Bayesian statistics (singular learning theory) and show that deep linear networks are in a certain sense ``mildly singular".