Plotting

 Leen, Todd K.


Asymptotic Analysis of Objectives based on Fisher Information in Active Learning

arXiv.org Machine Learning

Obtaining labels can be costly and time-consuming. Active learning allows a learning algorithm to intelligently query samples to be labeled for efficient learning. Fisher information ratio (FIR) has been used as an objective for selecting queries in active learning. However, little is known about the theory behind the use of FIR for active learning. There is a gap between the underlying theory and the motivation of its usage in practice. In this paper, we attempt to fill this gap and provide a rigorous framework for analyzing existing FIR-based active learning methods. In particular, we show that FIR can be asymptotically viewed as an upper bound of the expected variance of the log-likelihood ratio. Additionally, our analysis suggests a unifying framework that not only enables us to make theoretical comparisons among the existing querying methods based on FIR, but also allows us to give insight into the development of new active learning approaches based on this objective.


Hierarchical Fisher Kernels for Longitudinal Data

Neural Information Processing Systems

We develop new techniques for time series classification based on hierarchical Bayesian generative models (called mixed-effect models) and the Fisher kernel derived from them. A key advantage of the new formulation is that one can compute the Fisher information matrix despite varying sequence lengths and varying sampling intervals. This avoids the commonly-used ad hoc replacement of the Fisher information matrix with the identity which destroys the geometric invariance of the kernel. Our construction retains the geometric invariance, resulting in a kernel that is properly invariant under change of coordinates in the model parameter space. Experiments on detecting cognitive decline show that classifiers based on the proposed kernel outperform those based on generative models and other feature extraction routines, and on Fisher kernels that use the identity in place of the Fisher information.


Semi-supervised Learning with Penalized Probabilistic Clustering

Neural Information Processing Systems

While clustering is usually an unsupervised operation, there are circumstances inwhich we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of out-of-sample data in a manner consistent with the prior knowledge expressed in the training set. Our starting point is probabilistic clusteringbased on Gaussian mixture models (GMM) of the data distribution. We express clustering preferences in the prior distribution over assignments of data points to clusters. This prior penalizes cluster assignments according to the degree with which they violate the preferences.


Parameterized Novelty Detectors for Environmental Sensor Monitoring

Neural Information Processing Systems

As part of an environmental observation and forecasting system, sensors deployed in the Columbia RIver Estuary (CORIE) gather information on physical dynamics and changes in estuary habitat. Of these, salinity sensors are particularly susceptible to biofouling, which gradually degrades sensor response and corrupts critical data. Automatic fault detectors have the capability to identify bio-fouling early and minimize data loss. Complicating the development of discriminatory classifiers is the scarcity of bio-fouling onset examples and the variability of the bio-fouling signature. To solve these problems, we take a novelty detection approach that incorporates a parameterized bio-fouling model. These detectors identify the occurrence of bio-fouling, and its onset time as reliably as human experts. Real-time detectors installed during the summer of 2001 produced no false alarms, yet detected all episodes of sensor degradation before the field staff scheduled these sensors for cleaning. From this initial deployment through February 2003, our bio-fouling detectors have essentially doubled the amount of useful data coming from the CORIE sensors.


Parameterized Novelty Detectors for Environmental Sensor Monitoring

Neural Information Processing Systems

As part of an environmental observation and forecasting system, sensors deployed in the Columbia RIver Estuary (CORIE) gather information on physical dynamics and changes in estuary habitat. Ofthese, salinity sensors are particularly susceptible to biofouling, whichgradually degrades sensor response and corrupts critical data. Automatic fault detectors have the capability to identify bio-fouling early and minimize data loss. Complicating the development ofdiscriminatory classifiers is the scarcity of bio-fouling onset examples and the variability of the bio-fouling signature. To solve these problems, we take a novelty detection approach that incorporates a parameterized bio-fouling model. These detectors identify the occurrence of bio-fouling, and its onset time as reliably as human experts. Real-time detectors installed during the summer of2001 produced no false alarms, yet detected all episodes of sensor degradation before the field staff scheduled these sensors for cleaning. From this initial deployment through February 2003, our bio-fouling detectors have essentially doubled the amount of useful data coming from the CORIE sensors.


From Mixtures of Mixtures to Adaptive Transform Coding

Neural Information Processing Systems

We establish a principled framework for adaptive transform coding. Transformcoders are often constructed by concatenating an ad hoc choice of transform with suboptimal bit allocation and quantizer design.Instead, we start from a probabilistic latent variable model in the form of a mixture of constrained Gaussian mixtures. From this model we derive a transform coding algorithm, which is a constrained version of the generalized Lloyd algorithm for vector quantizer design. A byproduct of our derivation is the introduction ofa new transform basis, which unlike other transforms (PCA, DCT, etc.) is explicitly optimized for coding. Image compression experiments show adaptive transform coders designed with our algorithm improvecompressed image signal-to-noise ratio up to 3 dB compared to global transform coding and 0.5 to 2 dB compared to other adaptive transform coders. 1 Introduction Compression algorithms for image and video signals often use transform coding as a low-complexity alternative to vector quantization (VQ).


From Mixtures of Mixtures to Adaptive Transform Coding

Neural Information Processing Systems

We establish a principled framework for adaptive transform coding. Transform coders are often constructed by concatenating an ad hoc choice of transform with suboptimal bit allocation and quantizer design. Instead, we start from a probabilistic latent variable model in the form of a mixture of constrained Gaussian mixtures. From this model we derive a transform coding algorithm, which is a constrained version of the generalized Lloyd algorithm for vector quantizer design. A byproduct of our derivation is the introduction of a new transform basis, which unlike other transforms (PCA, DCT, etc.) is explicitly optimized for coding.


Probabilistic Image Sensor Fusion

Neural Information Processing Systems

We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.


Probabilistic Image Sensor Fusion

Neural Information Processing Systems

We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.


Probabilistic Image Sensor Fusion

Neural Information Processing Systems

We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example].