From Mixtures of Mixtures to Adaptive Transform Coding
Archer, Cynthia, Leen, Todd K.
–Neural Information Processing Systems
We establish a principled framework for adaptive transform coding. Transform coders are often constructed by concatenating an ad hoc choice of transform with suboptimal bit allocation and quantizer design. Instead, we start from a probabilistic latent variable model in the form of a mixture of constrained Gaussian mixtures. From this model we derive a transform coding algorithm, which is a constrained version of the generalized Lloyd algorithm for vector quantizer design. A byproduct of our derivation is the introduction of a new transform basis, which unlike other transforms (PCA, DCT, etc.) is explicitly optimized for coding.
Neural Information Processing Systems
Dec-31-2001