Goto

Collaborating Authors

 Lee, Yujin


HyperCLOVA X Technical Report

arXiv.org Artificial Intelligence

We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.


UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly Detection

arXiv.org Artificial Intelligence

Visual anomaly detection aims to learn normality from normal images, but existing approaches are fragmented across various tasks: defect detection, semantic anomaly detection, multi-class anomaly detection, and anomaly clustering. This one-task-one-model approach is resource-intensive and incurs high maintenance costs as the number of tasks increases. We present UniFormaly, a universal and powerful anomaly detection framework. We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods. We introduce Back Patch Masking (BPM) and top k-ratio feature matching to achieve unified anomaly detection. BPM eliminates irrelevant background regions using a self-attention map from self-supervised ViTs. This operates in a task-agnostic manner and alleviates memory storage consumption, scaling to tasks with large-scale datasets. Top k-ratio feature matching unifies anomaly levels and tasks by casting anomaly scoring into multiple instance learning. Finally, UniFormaly achieves outstanding results on various tasks and datasets. Codes are available at https://github.com/YoojLee/Uniformaly.