Goto

Collaborating Authors

 Lee, Youngkyu


Physics-Guided Multi-Fidelity DeepONet for Data-Efficient Flow Field Prediction

arXiv.org Artificial Intelligence

This study presents an enhanced multi-fidelity deep operator network (DeepONet) framework for efficient spatio-temporal flow field prediction, with particular emphasis on practical scenarios where high-fidelity data is scarce. We introduce several key innovations to improve the framework's efficiency and accuracy. First, we enhance the DeepONet architecture by incorporating a merge network that enables more complex feature interactions between operator and coordinate spaces, achieving a 50.4% reduction in prediction error compared to traditional dot-product operations. We further optimize the architecture through temporal positional encoding and point-based sampling strategies, achieving a 7.57% improvement in prediction accuracy while reducing training time by 96% through efficient sampling and automatic mixed precision training. Building upon this foundation, we develop a transfer learning-based multi-fidelity framework that leverages knowledge from pre-trained low-fidelity models to guide high-fidelity predictions. Our approach freezes the pre-trained branch and trunk networks while making only the merge network trainable during high-fidelity training, preserving valuable low-fidelity representations while efficiently adapting to high-fidelity features. Through systematic investigation, we demonstrate that this fine-tuning strategy not only significantly outperforms linear probing and full-tuning alternatives but also surpasses conventional multi-fidelity frameworks by up to 76%, while achieving up to 43.7% improvement in prediction accuracy compared to single-fidelity training. The core contribution lies in our novel time-derivative guided sampling approach: it maintains prediction accuracy equivalent to models trained with the full dataset while requiring only 60% of the original high-fidelity samples.


A Nonoverlapping Domain Decomposition Method for Extreme Learning Machines: Elliptic Problems

arXiv.org Artificial Intelligence

Extreme learning machine (ELM) is a methodology for solving partial differential equations (PDEs) using a single hidden layer feed-forward neural network. It presets the weight/bias coefficients in the hidden layer with random values, which remain fixed throughout the computation, and uses a linear least squares method for training the parameters of the output layer of the neural network. It is known to be much faster than Physics informed neural networks. However, classical ELM is still computationally expensive when a high level of representation is desired in the solution as this requires solving a large least squares system. In this paper, we propose a nonoverlapping domain decomposition method (DDM) for ELMs that not only reduces the training time of ELMs, but is also suitable for parallel computation. In numerical analysis, DDMs have been widely studied to reduce the time to obtain finite element solutions for elliptic PDEs through parallel computation. Among these approaches, nonoverlapping DDMs are attracting the most attention. Motivated by these methods, we introduce local neural networks, which are valid only at corresponding subdomains, and an auxiliary variable at the interface. We construct a system on the variable and the parameters of local neural networks. A Schur complement system on the interface can be derived by eliminating the parameters of the output layer. The auxiliary variable is then directly obtained by solving the reduced system after which the parameters for each local neural network are solved in parallel. A method for initializing the hidden layer parameters suitable for high approximation quality in large systems is also proposed. Numerical results that verify the acceleration performance of the proposed method with respect to the number of subdomains are presented.


Balanced Group Convolution: An Improved Group Convolution Based on Approximability Estimates

arXiv.org Artificial Intelligence

The performance of neural networks has been significantly improved by increasing the number of channels in convolutional layers. However, this increase in performance comes with a higher computational cost, resulting in numerous studies focused on reducing it. One promising approach to address this issue is group convolution, which effectively reduces the computational cost by grouping channels. However, to the best of our knowledge, there has been no theoretical analysis on how well the group convolution approximates the standard convolution. In this paper, we mathematically analyze the approximation of the group convolution to the standard convolution with respect to the number of groups. Furthermore, we propose a novel variant of the group convolution called balanced group convolution, which shows a higher approximation with a small additional computational cost. We provide experimental results that validate our theoretical findings and demonstrate the superior performance of the balanced group convolution over other variants of group convolution.


Parareal Neural Networks Emulating a Parallel-in-time Algorithm

arXiv.org Artificial Intelligence

As deep neural networks (DNNs) become deeper, the training time increases. In this perspective, multi-GPU parallel computing has become a key tool in accelerating the training of DNNs. In this paper, we introduce a novel methodology to construct a parallel neural network that can utilize multiple GPUs simultaneously from a given DNN. We observe that layers of DNN can be interpreted as the time steps of a time-dependent problem and can be parallelized by emulating a parallel-in-time algorithm called parareal. The parareal algorithm consists of fine structures which can be implemented in parallel and a coarse structure which gives suitable approximations to the fine structures. By emulating it, the layers of DNN are torn to form a parallel structure, which is connected using a suitable coarse network. We report accelerated and accuracy-preserved results of the proposed methodology applied to VGG-16 and ResNet-1001 on several datasets.