Lee, Wei-Tsih
A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems
Lee, Wei-Tsih, Pearson, John
Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability and residual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better than a linear equalizer in an experimental channel. 1 INTRODUCTION
A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems
Lee, Wei-Tsih, Pearson, John
Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability andresidual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better thana linear equalizer in an experimental channel. 1 INTRODUCTION
A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems
Lee, Wei-Tsih, Pearson, John
Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability and residual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better than a linear equalizer in an experimental channel. 1 INTRODUCTION
Self Organizing Neural Networks for the Identification Problem
Tenorio, Manoel Fernando, Lee, Wei-Tsih
This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and demonstrates its use in a system identification task. The algorithm constructs the network, chooses the neuron functions, and adjusts the weights. It is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results shows that SONN constructs a simpler, more accurate model.
Self Organizing Neural Networks for the Identification Problem
Tenorio, Manoel Fernando, Lee, Wei-Tsih
This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and demonstrates its use in a system identification task. The algorithm constructs the network, chooses the neuron functions, and adjusts the weights. It is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results shows that SONN constructs a simpler, more accurate model.
Self Organizing Neural Networks for the Identification Problem
Tenorio, Manoel Fernando, Lee, Wei-Tsih
This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and demonstrates its use in a system identification task. The algorithm constructs the network, chooses the neuron functions, and adjusts the weights. It is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results shows that SONN constructs a simpler, more accurate model.