A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems

Lee, Wei-Tsih, Pearson, John

Neural Information Processing Systems 

Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability and residual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better than a linear equalizer in an experimental channel. 1 INTRODUCTION

Similar Docs  Excel Report  more

TitleSimilaritySource
None found