Goto

Collaborating Authors

 Lee, Seanie


FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates

arXiv.org Artificial Intelligence

Federated Learning (FL) is a widely used framework for training models in a decentralized manner, ensuring that the central server does not have direct access to data from local clients. However, this approach may still fail to fully preserve data privacy, as models from local clients are exposed to the central server during the aggregation process. This issue becomes even more critical when training vision-language models (VLMs) with FL, as VLMs can easily memorize training data instances, making them vulnerable to membership inference attacks (MIAs). To address this challenge, we propose the FedRand framework, which avoids disclosing the full set of client parameters. In this framework, each client randomly selects subparameters of Low-Rank Adaptation (LoRA) from the server and keeps the remaining counterparts of the LoRA weights as private parameters. After training both parameters on the client's private dataset, only the non-private client parameters are sent back to the server for aggregation. This approach mitigates the risk of exposing client-side VLM parameters, thereby enhancing data privacy. We empirically validate that FedRand improves robustness against MIAs compared to relevant baselines while achieving accuracy comparable to methods that communicate full LoRA parameters across several benchmark datasets.


SafeRoute: Adaptive Model Selection for Efficient and Accurate Safety Guardrails in Large Language Models

arXiv.org Artificial Intelligence

Deploying large language models (LLMs) in real-world applications requires robust safety guard models to detect and block harmful user prompts. While large safety guard models achieve strong performance, their computational cost is substantial. To mitigate this, smaller distilled models are used, but they often underperform on "hard" examples where the larger model provides accurate predictions. We observe that many inputs can be reliably handled by the smaller model, while only a small fraction require the larger model's capacity. Motivated by this, we propose SafeRoute, a binary router that distinguishes hard examples from easy ones. Our method selectively applies the larger safety guard model to the data that the router considers hard, improving efficiency while maintaining accuracy compared to solely using the larger safety guard model. Experimental results on multiple benchmark datasets demonstrate that our adaptive model selection significantly enhances the trade-off between computational cost and safety performance, outperforming relevant baselines.


Calibrated Decision-Making through LLM-Assisted Retrieval

arXiv.org Artificial Intelligence

Large language models (LLMs; Jiang et al., 2023; Touvron et al., 2023; Dubey et al., 2024; Achiam et al., 2023) have demonstrated remarkable performance on numerous downstream natural language processing (NLP) tasks, leading to their widespread integration into various decision-making processes (Bommasani et al., 2021; Band et al., 2024; Zhou et al., 2024). However, even with significant increases in model size and the expansion of training datasets, it remains infeasible for LLMs to encode all possible knowledge within their parameters. As a result, the outputs produced by LLMs may not consistently be reliable for important human decision-making processes, potentially overlooking key or hidden details. Additionally, LLMs frequently provide inaccurate or misleading information with a high degree of confidence, a phenomenon referred to as hallucination (Zhuo et al., 2023; Papamarkou et al., 2024), which can lead humans to make flawed decisions. In addition, Zhou et al. (2024) have empirically demonstrated that human users often over-rely on LLM outputs during decision-making processes, and this over-reliance tends to increase in proportion to the model's confidence.


HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models

arXiv.org Artificial Intelligence

Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsible deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as, "Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g., "I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.


Optimized Speculative Sampling for GPU Hardware Accelerators

arXiv.org Artificial Intelligence

In this work, we optimize speculative sampling for parallel hardware accelerators to improve sampling speed. We notice that substantial portions of the intermediate matrices necessary for speculative sampling can be computed concurrently. This allows us to distribute the workload across multiple GPU threads, enabling simultaneous operations on matrix segments within thread blocks. Additionally, we use fast on-chip memory to store intermediate results, thereby minimizing the frequency of slow read and write operations across different types of memory. This results in profiling time improvements ranging from 6% to 13% relative to the baseline implementation, without compromising accuracy. To further accelerate speculative sampling, probability distributions parameterized by softmax are approximated by sigmoid. This approximation approach results in significantly greater relative improvements in profiling time, ranging from 37% to 94%, with a slight decline in accuracy. We conduct extensive experiments on both automatic speech recognition and summarization tasks to validate the effectiveness of our optimization methods.


Learning diverse attacks on large language models for robust red-teaming and safety tuning

arXiv.org Artificial Intelligence

Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of large language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.


Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries

arXiv.org Artificial Intelligence

Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.


Drug Discovery with Dynamic Goal-aware Fragments

arXiv.org Artificial Intelligence

Fragment-based drug discovery is an effective strategy for discovering drug candidates in the vast chemical space, and has been widely employed in molecular generative models. However, many existing fragment extraction methods in such models do not take the target chemical properties into account or rely on heuristic rules. Additionally, the existing fragment-based generative models cannot update the fragment vocabulary with goal-aware fragments newly discovered during the generation. To this end, we propose a molecular generative framework for drug discovery, named Goal-aware fragment Extraction, Assembly, and Modification (GEAM). GEAM consists of three modules, each responsible for goal-aware fragment extraction, fragment assembly, and fragment modification. The fragment extraction module identifies important fragments contributing to the desired target properties with the information bottleneck principle, thereby constructing an effective goal-aware fragment vocabulary. Moreover, GEAM can explore beyond the initial vocabulary with the fragment modification module, and the exploration is further enhanced through the dynamic goal-aware vocabulary update. We experimentally demonstrate that GEAM effectively discovers drug candidates through the generative cycle of the three modules in various drug discovery tasks.


DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models

arXiv.org Artificial Intelligence

Existing NAS methods suffer from either an excessive amount of time for repetitive sampling and training of many task-irrelevant architectures. To tackle such limitations of existing NAS methods, we propose a paradigm shift from NAS to a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG. Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them. Moreover, with the guidance of parameterized predictors, DiffusionNAG can flexibly generate task-optimal architectures with the desired properties for diverse tasks, by sampling from a region that is more likely to satisfy the properties. This conditional NAG scheme is significantly more efficient than previous NAS schemes which sample the architectures and filter them using the property predictors. We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS. DiffusionNAG achieves superior performance with speedups of up to 20 times when compared to the baselines on Transferable NAS benchmarks. Furthermore, when integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.


Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy. Previous studies have focused on building task-specific small Language Models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required. Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales obtained from LLMs with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE, StrategyQA, and OpenbookQA. Notably, our method makes the 250M T5 models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks.