Goto

Collaborating Authors

 Lee, Minseung


Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection

arXiv.org Artificial Intelligence

Accurately detecting objects at long distances remains a critical challenge in 3D object detection when relying solely on LiDAR sensors due to the inherent limitations of data sparsity. To address this issue, we propose the LiDAR-Camera Augmentation Network (LCANet), a novel framework that reconstructs LiDAR point cloud data by fusing 2D image features, which contain rich semantic information, generating additional points to improve detection accuracy. LCANet fuses data from LiDAR sensors and cameras by projecting image features into the 3D space, integrating semantic information into the point cloud data. This fused data is then encoded to produce 3D features that contain both semantic and spatial information, which are further refined to reconstruct final points before bounding box prediction. This fusion effectively compensates for LiDAR's weakness in detecting objects at long distances, which are often represented by sparse points. Additionally, due to the sparsity of many objects in the original dataset, which makes effective supervision for point generation challenging, we employ a point cloud completion network to create a complete point cloud dataset that supervises the generation of dense point clouds in our network. Extensive experiments on the KITTI and Waymo datasets demonstrate that LCANet significantly outperforms existing models, particularly in detecting sparse and distant objects.


Structured World Modeling via Semantic Vector Quantization

arXiv.org Artificial Intelligence

Neural discrete representations are crucial components of modern neural networks. However, their main limitation is that the primary strategies such as VQ-VAE can only provide representations at the patch level. Therefore, one of the main goals of representation learning, acquiring structured, semantic, and compositional abstractions such as the color and shape of an object, remains elusive. In this paper, we present the first approach to semantic neural discrete representation learning. The proposed model, called Semantic Vector-Quantized Variational Autoencoder (SVQ), leverages recent advances in unsupervised object-centric learning to address this limitation. Specifically, we observe that a simple approach quantizing at the object level poses a significant challenge and propose constructing scene representations hierarchically, from low-level discrete concept schemas to object representations. Additionally, we suggest a novel method for structured semantic world modeling by training a prior over these representations, enabling the ability to generate images by sampling the semantic properties of the objects in the scene. In experiments on various 2D and 3D object-centric datasets, we find that our model achieves superior generation performance compared to non-semantic vector quantization methods such as VQ-VAE and previous object-centric generative models. Furthermore, we find that the semantic discrete representations can solve downstream scene understanding tasks that require reasoning about the properties of different objects in the scene.