Goto

Collaborating Authors

 Lee, Hung-yi


How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario

arXiv.org Artificial Intelligence

The utilization of speech Self-Supervised Learning (SSL) models achieves impressive performance on Automatic Speech Recognition (ASR). However, in low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages. Typical solutions like fine-tuning the SSL model suffer from high computation costs while using frozen SSL models as feature extractors comes with poor performance. To handle these issues, we extend a conventional efficient fine-tuning scheme based on the adapter. We add an extra intermediate adaptation to warm up the adapter and downstream model initialization. Remarkably, we update only 1-5% of the total model parameters to achieve the adaptation. Experimental results on the ML-SUPERB dataset show that our solution outperforms conventional efficient fine-tuning. It achieves up to a 28% relative improvement in the Character/Phoneme error rate when adapting to unseen languages.


Can Large Audio-Language Models Truly Hear? Tackling Hallucinations with Multi-Task Assessment and Stepwise Audio Reasoning

arXiv.org Artificial Intelligence

Recent advancements in large audio-language models (LALMs) have shown impressive capabilities in understanding and reasoning about audio and speech information. However, these models still face challenges, including hallucinating non-existent sound events, misidentifying the order of sound events, and incorrectly attributing sound sources, which undermine their reliability and real-world application. To systematically evaluate these issues, we propose three distinct tasks: object existence, temporal order, and object attribute within audio. These tasks assess the models' comprehension of critical audio information aspects. Our experimental results reveal limitations in these fundamental tasks, underscoring the need for better models in recognizing specific sound events, determining event sequences, and identifying sound sources. To improve performance in these areas, we introduce a multi-turn chain-of-thought approach, which demonstrates significantly improved model performance across the proposed tasks.


Building a Taiwanese Mandarin Spoken Language Model: A First Attempt

arXiv.org Artificial Intelligence

This technical report presents our initial attempt to build a spoken large language model (LLM) for Taiwanese Mandarin, specifically tailored to enable real-time, speech-to-speech interaction in multi-turn conversations. Our end-to-end model incorporates a decoder-only transformer architecture and aims to achieve seamless interaction while preserving the conversational flow, including full-duplex capabilities allowing simultaneous speaking and listening. The paper also details the training process, including data preparation with synthesized dialogues and adjustments for real-time interaction. We also developed a platform to evaluate conversational fluency and response coherence in multi-turn dialogues. We hope the release of the report can contribute to the future development of spoken LLMs in Taiwanese Mandarin.


Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging

arXiv.org Artificial Intelligence

Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.


Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling

arXiv.org Artificial Intelligence

Multilingual Automatic Speech Recognition (ASR) aims to recognize and transcribe speech from multiple languages within a single system. Whisper, one of the most advanced ASR models, excels in this domain by handling 99 languages effectively, leveraging a vast amount of data and incorporating language tags as prefixes to guide the recognition process. However, despite its success, Whisper struggles with unseen languages, those not included in its pre-training. Motivated by the observation that many languages share linguistic characteristics, we propose methods that exploit these relationships to enhance ASR performance on unseen languages. Specifically, we introduce a weighted sum method, which computes a weighted sum of the embeddings of language tags, using Whisper's predicted language probabilities. In addition, we develop a predictor-based approach that refines the weighted sum embedding to more closely approximate the true embedding for unseen languages. Experimental results demonstrate substantial improvements in ASR performance, both in zero-shot and fine-tuning settings. Our proposed methods outperform baseline approaches, providing an effective solution for addressing unseen languages in multilingual ASR.


Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks

arXiv.org Artificial Intelligence

Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.


Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback

arXiv.org Artificial Intelligence

While textless Spoken Language Models (SLMs) have shown potential in end-to-end speech-to-speech modeling, they still lag behind text-based Large Language Models (LLMs) in terms of semantic coherence and relevance. This work introduces the Align-SLM framework, which leverages preference optimization inspired by Reinforcement Learning with AI Feedback (RLAIF) to enhance the semantic understanding of SLMs. Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO). We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation. Experimental results show that our method achieves state-of-the-art performance for SLMs on most benchmarks, highlighting the importance of preference optimization to improve the semantics of SLMs.


Meta-DiffuB: A Contextualized Sequence-to-Sequence Text Diffusion Model with Meta-Exploration

arXiv.org Artificial Intelligence

The diffusion model, a new generative modeling paradigm, has achieved significant success in generating images, audio, video, and text. It has been adapted for sequence-to-sequence text generation (Seq2Seq) through DiffuSeq, termed S2S Diffusion. Existing S2S-Diffusion models predominantly rely on fixed or hand-crafted rules to schedule noise during the diffusion and denoising processes. However, these models are limited by non-contextualized noise, which fails to fully consider the characteristics of Seq2Seq tasks. In this paper, we propose the Meta-DiffuB framework - a novel scheduler-exploiter S2S-Diffusion paradigm designed to overcome the limitations of existing S2S-Diffusion models. We employ Meta-Exploration to train an additional scheduler model dedicated to scheduling contextualized noise for each sentence. Our exploiter model, an S2S-Diffusion model, leverages the noise scheduled by our scheduler model for updating and generation. Meta-DiffuB achieves state-of-the-art performance compared to previous S2S-Diffusion models and fine-tuned pre-trained language models (PLMs) across four Seq2Seq benchmark datasets. We further investigate and visualize the impact of Meta-DiffuB's noise scheduling on the generation of sentences with varying difficulties. Additionally, our scheduler model can function as a "plug-and-play" model to enhance DiffuSeq without the need for fine-tuning during the inference stage.


Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data

arXiv.org Artificial Intelligence

Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems.


Unveiling Narrative Reasoning Limits of Large Language Models with Trope in Movie Synopses

arXiv.org Artificial Intelligence

Large language models (LLMs) equipped with chain-of-thoughts (CoT) prompting have shown significant multi-step reasoning capabilities in factual content like mathematics, commonsense, and logic. However, their performance in narrative reasoning, which demands greater abstraction capabilities, remains unexplored. This study utilizes tropes in movie synopses to assess the narrative reasoning abilities of state-of-the-art LLMs and uncovers their low performance. We introduce a trope-wise querying approach to address these challenges and boost the F1 score by 11.8 points. Moreover, Figure 1: While LLMs have revolutionized NLP reasoning, while prior studies suggest that CoT enhances surpassing previous supervised learning (SL) multi-step reasoning, this study shows methods and even reaching human-level performance CoT can cause hallucinations in narrative content, on some tasks, their limitations become apparent when reducing GPT-4's performance. We also tested against the Trope dataset. NLU: Natural Language introduce an Adversarial Injection method to Understanding, CS: Commonsense. Check Section embed trope-related text tokens into movie synopses 1 and 2.2 for details.