Goto

Collaborating Authors

 Lee, Hoi-Yin


Iterative Shaping of Multi-Particle Aggregates based on Action Trees and VLM

arXiv.org Artificial Intelligence

In this paper, we address the problem of manipulating multi-particle aggregates using a bimanual robotic system. Our approach enables the autonomous transport of dispersed particles through a series of shaping and pushing actions using robotically-controlled tools. Achieving this advanced manipulation capability presents two key challenges: high-level task planning and trajectory execution. For task planning, we leverage Vision Language Models (VLMs) to enable primitive actions such as tool affordance grasping and non-prehensile particle pushing. For trajectory execution, we represent the evolving particle aggregate's contour using truncated Fourier series, providing efficient parametrization of its closed shape. We adaptively compute trajectory waypoints based on group cohesion and the geometric centroid of the aggregate, accounting for its spatial distribution and collective motion. Through real-world experiments, we demonstrate the effectiveness of our methodology in actively shaping and manipulating multi-particle aggregates while maintaining high system cohesion.


Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls

arXiv.org Artificial Intelligence

The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.


PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components with a Robotic Line Scanner

arXiv.org Artificial Intelligence

The automatic inspection of surface defects is an important task for quality control in the computers, communications, and consumer electronics (3C) industry. Conventional devices for defect inspection (viz. line-scan sensors) have a limited field of view, thus, a robot-aided defect inspection system needs to scan the object from multiple viewpoints. Optimally selecting the robot's viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object's complete surface while reducing the scanning time and avoiding misdetection of defects. However, the development of CPP strategies for robotic line scanners has not been sufficiently studied by researchers. To fill this gap in the literature, in this paper, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. Our proposed solution consists of generating a local path by a new hybrid region segmentation method and an adaptive planning algorithm to ensure the coverage of the complete object surface. An optimization method for the global path sequence is developed to maximize the scanning efficiency. To verify our proposed methodology, we conduct detailed simulation-based and experimental studies on various free-form workpieces, and compare its performance with a state-of-the-art solution. The reported results demonstrate the feasibility and effectiveness of our approach.