Lee, Gim Hee
NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM
Wang, Zihan, Zhu, Yaohui, Lee, Gim Hee, Fan, Yachun
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
FlexEvent: Event Camera Object Detection at Arbitrary Frequencies
Lu, Dongyue, Kong, Lingdong, Lee, Gim Hee, Chane, Camille Simon, Ooi, Wei Tsang
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to their microsecond-level temporal resolution and asynchronous operation. Existing event-based object detection methods, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event cameras. To address these limitations, we propose FlexEvent, a novel event camera object detection framework that enables detection at arbitrary frequencies. Our approach consists of two key components: FlexFuser, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FAL, a frequency-adaptive learning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems.
g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
Wang, Zihan, Lee, Gim Hee
We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
GenXD: Generating Any 3D and 4D Scenes
Zhao, Yuyang, Lin, Chung-Ching, Lin, Kevin, Yan, Zhiwen, Li, Linjie, Yang, Zhengyuan, Wang, Jianfeng, Lee, Gim Hee, Wang, Lijuan
Figure 1: GenX D is a unified model for high-quality 3D and 4D generation from any number of condition images. By controlling the motion strength and condition masks, GenX D can support various application without any modification. The condition images are shown with star icon and the time dimension is illustrated with dash line. Recent developments in 2D visual generation have been remarkably successful. However, 3D and 4D generation remain challenging in real-world applications due to the lack of large-scale 4D data and effective model design. In this paper, we propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life. Due to the lack of real-world 4D data in the community, we first propose a data curation pipeline to obtain camera poses and object motion strength from videos. Based on this pipeline, we introduce a large-scale real-world 4D scene dataset: CamVid-30K. By leveraging all the 3D and 4D data, we develop our framework, GenX D, which allows us to produce any 3D or 4D scene. We propose multiview-temporal modules, which disentangle camera and object movements, to seamlessly learn from both 3D and 4D data. Additionally, GenX D employs masked latent conditions to support a variety of conditioning views. We perform extensive evaluations across various real-world and synthetic datasets, demonstrating GenX D's effectiveness and versatility compared to previous methods in 3D and 4D generation. The dataset and code will be made publicly available.
Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions
Low, Weng Fei, Lee, Gim Hee
The stark contrast in the design philosophy of an event camera makes it particularly ideal for operating under high-speed, high dynamic range and low-light conditions, where standard cameras underperform. Nonetheless, event cameras still suffer from some amount of motion blur, especially under these challenging conditions, in contrary to what most think. This is attributed to the limited bandwidth of the event sensor pixel, which is mostly proportional to the light intensity. Thus, to ensure that event cameras can truly excel in such conditions where it has an edge over standard cameras, it is crucial to account for event motion blur in downstream applications, especially reconstruction. However, none of the recent works on reconstructing Neural Radiance Fields (NeRFs) from events, nor event simulators, have considered the full effects of event motion blur. To this end, we propose, Deblur e-NeRF, a novel method to directly and effectively reconstruct blur-minimal NeRFs from motion-blurred events generated under high-speed motion or low-light conditions. The core component of this work is a physically-accurate pixel bandwidth model proposed to account for event motion blur under arbitrary speed and lighting conditions. We also introduce a novel threshold-normalized total variation loss to improve the regularization of large textureless patches. Experiments on real and novel realistically simulated sequences verify our effectiveness. Our code, event simulator and synthetic event dataset will be open-sourced.
Segment Any 3D Object with Language
Lee, Seungjun, Zhao, Yuyang, Lee, Gim Hee
In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-3DIS) with free-form language instructions. Earlier works that rely on only annotated base categories for training suffer from limited generalization to unseen novel categories. Recent works mitigate poor generalizability to novel categories by generating class-agnostic masks or projecting generalized masks from 2D to 3D, but disregard semantic or geometry information, leading to sub-optimal performance. Instead, generating generalizable but semantic-related masks directly from 3D point clouds would result in superior outcomes. In this paper, we introduce Segment any 3D Object with LanguagE (SOLE), which is a semantic and geometric-aware visual-language learning framework with strong generalizability by generating semantic-related masks directly from 3D point clouds. Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder. In addition, to align the 3D segmentation model with various language instructions and enhance the mask quality, we introduce three types of multimodal associations as supervision. Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks, and the results are even close to the fully-supervised counterpart despite the absence of class annotations in the training. Furthermore, extensive qualitative results demonstrate the versatility of our SOLE to language instructions.
Optimizing the Placement of Roadside LiDARs for Autonomous Driving
Jiang, Wentao, Xiang, Hao, Cai, Xinyu, Xu, Runsheng, Ma, Jiaqi, Li, Yikang, Lee, Gim Hee, Liu, Si
Multi-agent cooperative perception is an increasingly popular topic in the field of autonomous driving, where roadside LiDARs play an essential role. However, how to optimize the placement of roadside LiDARs is a crucial but often overlooked problem. This paper proposes an approach to optimize the placement of roadside LiDARs by selecting optimized positions within the scene for better perception performance. To efficiently obtain the best combination of locations, a greedy algorithm based on perceptual gain is proposed, which selects the location that can maximize the perceptual gain sequentially. We define perceptual gain as the increased perceptual capability when a new LiDAR is placed. To obtain the perception capability, we propose a perception predictor that learns to evaluate LiDAR placement using only a single point cloud frame. A dataset named Roadside-Opt is created using the CARLA simulator to facilitate research on the roadside LiDAR placement problem.
Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion
Low, Weng Fei, Lee, Gim Hee
Event cameras offer many advantages over standard cameras due to their distinctive principle of operation: low power, low latency, high temporal resolution and high dynamic range. Nonetheless, the success of many downstream visual applications also hinges on an efficient and effective scene representation, where Neural Radiance Field (NeRF) is seen as the leading candidate. Such promise and potential of event cameras and NeRF inspired recent works to investigate on the reconstruction of NeRF from moving event cameras. However, these works are mainly limited in terms of the dependence on dense and low-noise event streams, as well as generalization to arbitrary contrast threshold values and camera speed profiles. In this work, we propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras under various real-world conditions, especially from sparse and noisy events generated under non-uniform motion. It consists of two key components: a realistic event generation model that accounts for various intrinsic parameters (e.g. time-independent, asymmetric threshold and refractory period) and non-idealities (e.g. pixel-to-pixel threshold variation), as well as a complementary pair of normalized reconstruction losses that can effectively generalize to arbitrary speed profiles and intrinsic parameter values without such prior knowledge. Experiments on real and novel realistically simulated sequences verify our effectiveness. Our code, synthetic dataset and improved event simulator are public.
Voxel-based Network for Shape Completion by Leveraging Edge Generation
Wang, Xiaogang, Ang, Marcelo H Jr, Lee, Gim Hee
Deep learning technique has yielded significant improvements in point cloud completion with the aim of completing missing object shapes from partial inputs. However, most existing methods fail to recover realistic structures due to over-smoothing of fine-grained details. In this paper, we develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN). We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges. This decoupled architecture together with a multiscale grid feature learning is able to generate more realistic on-surface details. We evaluate our model on the Figure 1: We propose an edge-guiding and voxel-based publicly available completion datasets and show that it point cloud completion network to reconstruct complete outperforms existing state-of-the-art approaches quantitatively points from incomplete inputs.
DeepI2P: Image-to-Point Cloud Registration via Deep Classification
Li, Jiaxin, Lee, Gim Hee
This paper presents DeepI2P: a novel approach for cross-modality registration between an image and a point cloud. Given an image (e.g. from a rgb-camera) and a general point cloud (e.g. from a 3D Lidar scanner) captured at different locations in the same scene, our method estimates the relative rigid transformation between the coordinate frames of the camera and Lidar. Learning common feature descriptors to establish correspondences for the registration is inherently challenging due to the lack of appearance and geometric correlations across the two modalities. We circumvent the difficulty by converting the registration problem into a classification and inverse camera projection optimization problem. A classification neural network is designed to label whether the projection of each point in the point cloud is within or beyond the camera frustum. These labeled points are subsequently passed into a novel inverse camera projection solver to estimate the relative pose. Extensive experimental results on Oxford Robotcar and KITTI datasets demonstrate the feasibility of our approach. Our source code is available at https://github.com/lijx10/DeepI2P