Lee, Dongwon
RONA: Pragmatically Diverse Image Captioning with Coherence Relations
Ramakrishnan, Aashish Anantha, Ramakrishnan, Aadarsh Anantha, Lee, Dongwon
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance pragmatic diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. To address this challenge, we propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as an axis for variation. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
Collaborative Evaluation of Deepfake Text with Deliberation-Enhancing Dialogue Systems
Lee, Jooyoung, Zhu, Xiaochen, Karadzhov, Georgi, Stafford, Tom, Vlachos, Andreas, Lee, Dongwon
The proliferation of generative models has presented significant challenges in distinguishing authentic human-authored content from deepfake content. Collaborative human efforts, augmented by AI tools, present a promising solution. In this study, we explore the potential of DeepFakeDeLiBot, a deliberation-enhancing chatbot, to support groups in detecting deepfake text. Our findings reveal that group-based problem-solving significantly improves the accuracy of identifying machine-generated paragraphs compared to individual efforts. While engagement with DeepFakeDeLiBot does not yield substantial performance gains overall, it enhances group dynamics by fostering greater participant engagement, consensus building, and the frequency and diversity of reasoning-based utterances. Additionally, participants with higher perceived effectiveness of group collaboration exhibited performance benefits from DeepFakeDeLiBot. These findings underscore the potential of deliberative chatbots in fostering interactive and productive group dynamics while ensuring accuracy in collaborative deepfake text detection. \textit{Dataset and source code used in this study will be made publicly available upon acceptance of the manuscript.
CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships?
Ramakrishnan, Aashish Anantha, Ramakrishnan, Aadarsh Anantha, Lee, Dongwon
Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://github.com/aashish2000/CORDIAL.
CORRECT: Context- and Reference-Augmented Reasoning and Prompting for Fact-Checking
Zhang, Delvin Ce, Lee, Dongwon
Fact-checking the truthfulness of claims usually requires reasoning over multiple evidence sentences. Oftentimes, evidence sentences may not be always self-contained, and may require additional contexts and references from elsewhere to understand coreferential expressions, acronyms, and the scope of a reported finding. For example, evidence sentences from an academic paper may need contextual sentences in the paper and descriptions in its cited papers to determine the scope of a research discovery. However, most fact-checking models mainly focus on the reasoning within evidence sentences, and ignore the auxiliary contexts and references. To address this problem, we propose a novel method, Context- and Reference-augmented Reasoning and Prompting. For evidence reasoning, we construct a three-layer evidence graph with evidence, context, and reference layers. We design intra- and cross-layer reasoning to integrate three graph layers into a unified evidence embedding. For verdict prediction, we design evidence-conditioned prompt encoder, which produces unique prompt embeddings for each claim. These evidence-conditioned prompt embeddings and claims are unified for fact-checking. Experiments verify the strength of our model.
Beyond checkmate: exploring the creative chokepoints in AI text
Tripto, Nafis Irtiza, Venkatraman, Saranya, Nahar, Mahjabin, Lee, Dongwon
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) and Artificial Intelligence (AI), unlocking unprecedented capabilities. This rapid advancement has spurred research into various aspects of LLMs, their text generation & reasoning capability, and potential misuse, fueling the necessity for robust detection methods. While numerous prior research has focused on detecting LLM-generated text (AI text) and thus checkmating them, our study investigates a relatively unexplored territory: portraying the nuanced distinctions between human and AI texts across text segments. Whether LLMs struggle with or excel at incorporating linguistic ingenuity across different text segments carries substantial implications for determining their potential as effective creative assistants to humans. Through an analogy with the structure of chess games-comprising opening, middle, and end games-we analyze text segments (introduction, body, and conclusion) to determine where the most significant distinctions between human and AI texts exist. While AI texts can approximate the body segment better due to its increased length, a closer examination reveals a pronounced disparity, highlighting the importance of this segment in AI text detection. Additionally, human texts exhibit higher cross-segment differences compared to AI texts. Overall, our research can shed light on the intricacies of human-AI text distinctions, offering novel insights for text detection and understanding.
Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
Nahar, Mahjabin, Lee, Sian, Guillen, Becky, Lee, Dongwon
While Gen-AI offers significant benefits in content generation and task automation [9], it can be also misused and abused in nefarious applications [7], with more significant risks toward long-tail populations and regions [6]. Professionals in fields like journalism and law still remain cautious due to concerns over hallucinations and ethical issues but scholars in Computer Science (CS), the field where Gen-AI originated, appear to be cautiously but actively exploring its use. For instance, [3] reports the increased use of large language models (LLMs) in the CS scholarly articles (up to 17.5%), compared to Mathematics articles (up to 6.3%), and [2] reports that between 6.5% and 16.9% of peer reviews at ICLR 2024, NeurIPS 2023, CoRL 2023, and EMNLP 2023 may have been significantly altered by LLMs beyond minor revisions. Considering researchers' increasing adoption of Gen-AI, it is crucial to establish usage guidelines and well-defined policies to promote fair and ethical practices in scholarly writing and peer reviews. Previous research also examined Gen-AI policies by major publishers like Elsevier, Springer, etc. [5], but there is still a lack of clear understanding of how CS conferences are adapting to this paradigm shift.
Divide-Verify-Refine: Aligning LLM Responses with Complex Instructions
Zhang, Xianren, Tang, Xianfeng, Liu, Hui, Wu, Zongyu, He, Qi, Lee, Dongwon, Wang, Suhang
Recent studies show that LLMs, particularly open-source models, struggle to follow complex instructions with multiple constraints. Despite the importance, methods to improve LLMs' adherence to such constraints remain unexplored, and current research focuses on evaluating this ability rather than developing solutions. While a few studies enhance constraint adherence through model tuning, this approach is computationally expensive and heavily reliant on training data quality. An alternative is to leverage LLMs' self-correction capabilities, allowing them to adjust responses to better meet specified constraints. However, this self-correction ability of LLMs is limited by the feedback quality, as LLMs cannot autonomously generate reliable feedback or detect errors. Moreover, the self-refinement process heavily depends on few-shot examples that illustrate how to modify responses to meet constraints. As constraints in complex instructions are diverse and vary widely, manually crafting few-shot examples for each constraint type can be labor-intensive and sub-optimal. To deal with these two challenges, we propose the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide complex instructions into single constraints and prepare appropriate tools; (2) Verify: To address the feedback quality problem, these tools will rigorously verify responses and provide reliable feedback; (3) Refine: To address the constraint diversity challenge, we design a refinement repository that collects successful refinement processes and uses them as few-shot demonstrations for future cases, allowing LLMs to learn from the past experience during inference. Additionally, we develop a new dataset of complex instructions, each containing 1-6 constraints. Experiments show that the framework significantly improves performance, doubling LLama3.1-8B's constraint adherence on instructions with 6 constraints.
CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis
Venkatraman, Saranya, Tripto, Nafis Irtiza, Lee, Dongwon
The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author ($N=1$) to multi-author (up to $N=5$) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \texttt{\url{https://github.com/saranya-venkatraman/multi_llm_story_writing}}.
From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
Lalai, Harsh Nishant, Ramakrishnan, Aashish Anantha, Shah, Raj Sanjay, Lee, Dongwon
With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Text watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques, through a comprehensive survey of the research literature. Our work has two key advantages, (1) we analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, watermarking addition, and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research in protecting text authorship. This extensive coverage and detailed analysis sets our work apart, offering valuable insights into the evolving landscape of text watermarking in language models.
A Ship of Theseus: Curious Cases of Paraphrasing in LLM-Generated Texts
Tripto, Nafis Irtiza, Venkatraman, Saranya, Macko, Dominik, Moro, Robert, Srba, Ivan, Uchendu, Adaku, Le, Thai, Lee, Dongwon
In the realm of text manipulation and linguistic transformation, the question of authorship has been a subject of fascination and philosophical inquiry. Much like the Ship of Theseus paradox, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: Does a text retain its original authorship when it undergoes numerous paraphrasing iterations? Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in both the generation of original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text--i.e., whether authorship should be attributed to the original human author or the AI-powered tool. Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle. Using a computational approach, we discover that the diminishing performance in text classification models, with each successive paraphrasing iteration, is closely associated with the extent of deviation from the original author's style, thus provoking a reconsideration of the current notion of authorship.