Goto

Collaborating Authors

 Lee, Byung Suk


From Knowledge Generation to Knowledge Verification: Examining the BioMedical Generative Capabilities of ChatGPT

arXiv.org Artificial Intelligence

The generative capabilities of LLM models present opportunities in accelerating tasks and concerns with the authenticity of the knowledge it produces. To address the concerns, we present a computational approach that systematically evaluates the factual accuracy of biomedical knowledge that an LLM model has been prompted to generate. Our approach encompasses two processes: the generation of disease-centric associations and the verification of them using the semantic knowledge of the biomedical ontologies. Using ChatGPT as the select LLM model, we designed a set of prompt-engineering processes to generate linkages between diseases, drugs, symptoms, and genes to establish grounds for assessments. Experimental results demonstrate high accuracy in identifying disease terms (88%-97%), drug names (90%-91%), and genetic information (88%-98%). The symptom term identification accuracy was notably lower (49%-61%), as verified against the DOID, ChEBI, SYMPTOM, and GO ontologies accordingly. The verification of associations reveals literature coverage rates of (89%-91%) among disease-drug and disease-gene associations. The low identification accuracy for symptom terms also contributed to the verification of symptom-related associations (49%-62%).


An Automated Machine Learning Approach for Detecting Anomalous Peak Patterns in Time Series Data from a Research Watershed in the Northeastern United States Critical Zone

arXiv.org Artificial Intelligence

This paper presents an automated machine learning framework designed to assist hydrologists in detecting anomalies in time series data generated by sensors in a research watershed in the northeastern United States critical zone. The framework specifically focuses on identifying peak-pattern anomalies, which may arise from sensor malfunctions or natural phenomena. However, the use of classification methods for anomaly detection poses challenges, such as the requirement for labeled data as ground truth and the selection of the most suitable deep learning model for the given task and dataset. To address these challenges, our framework generates labeled datasets by injecting synthetic peak patterns into synthetically generated time series data and incorporates an automated hyperparameter optimization mechanism. This mechanism generates an optimized model instance with the best architectural and training parameters from a pool of five selected models, namely Temporal Convolutional Network (TCN), InceptionTime, MiniRocket, Residual Networks (ResNet), and Long Short-Term Memory (LSTM). The selection is based on the user's preferences regarding anomaly detection accuracy and computational cost. The framework employs Time-series Generative Adversarial Networks (TimeGAN) as the synthetic dataset generator. The generated model instances are evaluated using a combination of accuracy and computational cost metrics, including training time and memory, during the anomaly detection process. Performance evaluation of the framework was conducted using a dataset from a watershed, demonstrating consistent selection of the most fitting model instance that satisfies the user's preferences.


TransNAS-TSAD: Harnessing Transformers for Multi-Objective Neural Architecture Search in Time Series Anomaly Detection

arXiv.org Artificial Intelligence

The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. Traditional methods, while comprehensive, often struggle to capture the complex interdependencies in such data. This paper introduces TransNAS-TSAD, a novel framework that synergizes transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This innovative approach effectively tackles the complexities of both univariate and multivariate time series, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models, demonstrating marked improvements in diverse data scenarios. We also propose the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the crucial balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research paves the way for future developments in the field, highlighting its potential in a wide range of industry applications.


Challenging the Machinery of Generative AI with Fact-Checking: Ontology-Driven Biological Graphs for Verifying Human Disease-Gene Links

arXiv.org Artificial Intelligence

Background: Since the launch of various generative AI tools, scientists have been striving to evaluate their capabilities and contents, in the hope of establishing trust in their generative abilities. Regulations and guidelines are emerging to verify generated contents and identify novel uses. Objective: we aspire to demonstrate how ChatGPT claims are checked computationally using the rigor of network models. We aim to achieve fact-checking of the knowledge embedded in biological graphs that were contrived from ChatGPT contents at the aggregate level. Methods: We adopted a biological networks approach that enables the systematic interrogation of ChatGPT's linked entities. We designed an ontology-driven fact-checking algorithm that compares biological graphs constructed from approximately 200,000 PubMed abstracts with counterparts constructed from a dataset generated using the ChatGPT-3.5 Turbo model. Results: in 10-samples of 250 randomly selected records a ChatGPT dataset of 1000 "simulated" articles, the fact-checking link accuracy ranged from 70% to 86%. The computational process was followed by a manual process using IntAct Interaction database and the Gene regulatory network database (GRNdb) to confirm the validity of the links identified computationally. We also found that the proximity of the edges of ChatGPT graphs were significantly shorter (90 -- 153) while literature distances were (236 -- 765). This pattern held true in all 10-samples. Conclusion: This study demonstrated high accuracy of aggregate disease-gene links relationships found in ChatGPT-generated texts. The strikingly consistent pattern offers an illuminate new biological pathways that may open the door for new research opportunities.