Goto

Collaborating Authors

 Leckie, Christopher


SPADE: Systematic Prompt Framework for Automated Dialogue Expansion in Machine-Generated Text Detection

arXiv.org Artificial Intelligence

The increasing capability of large language models (LLMs) to generate synthetic content has heightened concerns about their misuse, driving the development of Machine-Generated Text (MGT) detection models. However, these detectors face significant challenges due to the lack of systematically generated, high-quality datasets for training. To address this issue, we propose five novel data augmentation frameworks for synthetic user dialogue generation through a structured prompting approach, reducing the costs associated with traditional data collection methods. Our proposed method yields 14 new dialogue datasets, which we benchmark against seven MGT detection models. The results demonstrate improved generalization performance when utilizing a mixed dataset produced by our proposed augmentation framework. Furthermore, considering that real-world agents lack knowledge of future opponent utterances, we simulate online dialogue detection and examine the relationship between chat history length and detection accuracy. We also benchmark online detection performance with limited chat history on our frameworks. Our open-source datasets can be downloaded from https://github.com/AngieYYF/SPADE-customer-service-dialogue.


CURVALID: Geometrically-guided Adversarial Prompt Detection

arXiv.org Artificial Intelligence

Adversarial prompts capable of jailbreaking large language models (LLMs) and inducing undesirable behaviours pose a significant obstacle to their safe deployment. Current mitigation strategies rely on activating built-in defence mechanisms or fine-tuning the LLMs, but the fundamental distinctions between adversarial and benign prompts are yet to be understood. In this work, we introduce CurvaLID, a novel defense framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an $n$-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. Additionally, we employ Local Intrinsic Dimensionality (LID) to capture geometric features of text prompts within adversarial subspaces. Our findings reveal that adversarial prompts differ fundamentally from benign prompts in terms of their geometric characteristics. Our results demonstrate that CurvaLID delivers superior detection and rejection of adversarial queries, paving the way for safer LLM deployment. The source code can be found at https://github.com/Cancanxxx/CurvaLID


HALO: Robust Out-of-Distribution Detection via Joint Optimisation

arXiv.org Artificial Intelligence

Effective out-of-distribution (OOD) detection is crucial for the safe deployment of machine learning models in real-world scenarios. However, recent work has shown that OOD detection methods are vulnerable to adversarial attacks, potentially leading to critical failures in high-stakes applications. This discovery has motivated work on robust OOD detection methods that are capable of maintaining performance under various attack settings. Prior approaches have made progress on this problem but face a number of limitations: often only exhibiting robustness to attacks on OOD data or failing to maintain strong clean performance. In this work, we adapt an existing robust classification framework, TRADES, extending it to the problem of robust OOD detection and discovering a novel objective function. Recognising the critical importance of a strong clean/robust trade-off for OOD detection, we introduce an additional loss term which boosts classification and detection performance. Our approach, called HALO (Helper-based AdversariaL OOD detection), surpasses existing methods and achieves state-of-the-art performance across a number of datasets and attack settings. Extensive experiments demonstrate an average AUROC improvement of 3.15 in clean settings and 7.07 under adversarial attacks when compared to the next best method. Furthermore, HALO exhibits resistance to transferred attacks, offers tuneable performance through hyperparameter selection, and is compatible with existing OOD detection frameworks out-of-the-box, leaving open the possibility of future performance gains. Code is available at: https://github.com/hugo0076/HALO


GreedyPixel: Fine-Grained Black-Box Adversarial Attack Via Greedy Algorithm

arXiv.org Artificial Intelligence

A critical requirement for deep learning models is ensuring their robustness against adversarial attacks. These attacks commonly introduce noticeable perturbations, compromising the visual fidelity of adversarial examples. Another key challenge is that while white-box algorithms can generate effective adversarial perturbations, they require access to the model gradients, limiting their practicality in many real-world scenarios. Existing attack mechanisms struggle to achieve similar efficacy without access to these gradients. In this paper, we introduce GreedyPixel, a novel pixel-wise greedy algorithm designed to generate high-quality adversarial examples using only query-based feedback from the target model. GreedyPixel improves computational efficiency in what is typically a brute-force process by perturbing individual pixels in sequence, guided by a pixel-wise priority map. This priority map is constructed by ranking gradients obtained from a surrogate model, providing a structured path for perturbation. Our results demonstrate that GreedyPixel achieves attack success rates comparable to white-box methods without the need for gradient information, and surpasses existing algorithms in black-box settings, offering higher success rates, reduced computational time, and imperceptible perturbations. These findings underscore the advantages of GreedyPixel in terms of attack efficacy, time efficiency, and visual quality.


Psychometrics for Hypnopaedia-Aware Machinery via Chaotic Projection of Artificial Mental Imagery

arXiv.org Artificial Intelligence

Neural backdoors represent insidious cybersecurity loopholes that render learning machinery vulnerable to unauthorised manipulations, potentially enabling the weaponisation of artificial intelligence with catastrophic consequences. A backdoor attack involves the clandestine infiltration of a trigger during the learning process, metaphorically analogous to hypnopaedia, where ideas are implanted into a subject's subconscious mind under the state of hypnosis or unconsciousness. When activated by a sensory stimulus, the trigger evokes conditioned reflex that directs a machine to mount a predetermined response. In this study, we propose a cybernetic framework for constant surveillance of backdoors threats, driven by the dynamic nature of untrustworthy data sources. We develop a self-aware unlearning mechanism to autonomously detach a machine's behaviour from the backdoor trigger. Through reverse engineering and statistical inference, we detect deceptive patterns and estimate the likelihood of backdoor infection. We employ model inversion to elicit artificial mental imagery, using stochastic processes to disrupt optimisation pathways and avoid convergent but potentially flawed patterns. This is followed by hypothesis analysis, which estimates the likelihood of each potentially malicious pattern being the true trigger and infers the probability of infection. The primary objective of this study is to maintain a stable state of equilibrium between knowledge fidelity and backdoor vulnerability.


Round Trip Translation Defence against Large Language Model Jailbreaking Attacks

arXiv.org Artificial Intelligence

Large language models (LLMs) are susceptible to social-engineered attacks that are human-interpretable but require a high level of comprehension for LLMs to counteract. Existing defensive measures can only mitigate less than half of these attacks at most. To address this issue, we propose the Round Trip Translation (RTT) method, the first algorithm specifically designed to defend against social-engineered attacks on LLMs. RTT paraphrases the adversarial prompt and generalizes the idea conveyed, making it easier for LLMs to detect induced harmful behavior. This method is versatile, lightweight, and transferrable to different LLMs. Our defense successfully mitigated over 70% of Prompt Automatic Iterative Refinement (PAIR) attacks, which is currently the most effective defense to the best of our knowledge. We are also the first to attempt mitigating the MathsAttack and reduced its attack success rate by almost 40%. Our code is publicly available at https://github.com/Cancanxxx/Round_Trip_Translation_Defence


OIL-AD: An Anomaly Detection Framework for Sequential Decision Sequences

arXiv.org Artificial Intelligence

Anomaly detection in decision-making sequences is a challenging problem due to the complexity of normality representation learning and the sequential nature of the task. Most existing methods based on Reinforcement Learning (RL) are difficult to implement in the real world due to unrealistic assumptions, such as having access to environment dynamics, reward signals, and online interactions with the environment. To address these limitations, we propose an unsupervised method named Offline Imitation Learning based Anomaly Detection (OIL-AD), which detects anomalies in decision-making sequences using two extracted behaviour features: action optimality and sequential association. Our offline learning model is an adaptation of behavioural cloning with a transformer policy network, where we modify the training process to learn a Q function and a state value function from normal trajectories. We propose that the Q function and the state value function can provide sufficient information about agents' behavioural data, from which we derive two features for anomaly detection. The intuition behind our method is that the action optimality feature derived from the Q function can differentiate the optimal action from others at each local state, and the sequential association feature derived from the state value function has the potential to maintain the temporal correlations between decisions (state-action pairs). Our experiments show that OIL-AD can achieve outstanding online anomaly detection performance with up to 34.8% improvement in F1 score over comparable baselines.


Adversarial Coreset Selection for Efficient Robust Training

arXiv.org Artificial Intelligence

Neural networks are vulnerable to adversarial attacks: adding well-crafted, imperceptible perturbations to their input can modify their output. Adversarial training is one of the most effective approaches to training robust models against such attacks. Unfortunately, this method is much slower than vanilla training of neural networks since it needs to construct adversarial examples for the entire training data at every iteration. By leveraging the theory of coreset selection, we show how selecting a small subset of training data provides a principled approach to reducing the time complexity of robust training. To this end, we first provide convergence guarantees for adversarial coreset selection. In particular, we show that the convergence bound is directly related to how well our coresets can approximate the gradient computed over the entire training data. Motivated by our theoretical analysis, we propose using this gradient approximation error as our adversarial coreset selection objective to reduce the training set size effectively. Once built, we run adversarial training over this subset of the training data. Unlike existing methods, our approach can be adapted to a wide variety of training objectives, including TRADES, $\ell_p$-PGD, and Perceptual Adversarial Training. We conduct extensive experiments to demonstrate that our approach speeds up adversarial training by 2-3 times while experiencing a slight degradation in the clean and robust accuracy.


Towards quantum enhanced adversarial robustness in machine learning

arXiv.org Artificial Intelligence

Machine learning algorithms are powerful tools for data driven tasks such as image classification and feature detection, however their vulnerability to adversarial examples - input samples manipulated to fool the algorithm - remains a serious challenge. The integration of machine learning with quantum computing has the potential to yield tools offering not only better accuracy and computational efficiency, but also superior robustness against adversarial attacks. Indeed, recent work has employed quantum mechanical phenomena to defend against adversarial attacks, spurring the rapid development of the field of quantum adversarial machine learning (QAML) and potentially yielding a new source of quantum advantage. Despite promising early results, there remain challenges towards building robust real-world QAML tools. In this review we discuss recent progress in QAML and identify key challenges. We also suggest future research directions which could determine the route to practicality for QAML approaches as quantum computing hardware scales up and noise levels are reduced.


Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak Signals

arXiv.org Artificial Intelligence

The emergence of social media as one of the main platforms for people to access news has enabled the wide dissemination of fake news. This has motivated numerous studies on automating fake news detection. Although there have been limited attempts at unsupervised fake news detection, their performance suffers due to not exploiting the knowledge from various modalities related to news records and due to the presence of various latent biases in the existing news datasets. To address these limitations, this work proposes an effective framework for unsupervised fake news detection, which first embeds the knowledge available in four modalities in news records and then proposes a novel noise-robust self-supervised learning technique to identify the veracity of news records from the multi-modal embeddings. Also, we propose a novel technique to construct news datasets minimizing the latent biases in existing news datasets. Following the proposed approach for dataset construction, we produce a Large-scale Unlabelled News Dataset consisting 419,351 news articles related to COVID-19, acronymed as LUND-COVID. We trained the proposed unsupervised framework using LUND-COVID to exploit the potential of large datasets, and evaluate it using a set of existing labelled datasets. Our results show that the proposed unsupervised framework largely outperforms existing unsupervised baselines for different tasks such as multi-modal fake news detection, fake news early detection and few-shot fake news detection, while yielding notable improvements for unseen domains during training.