Le, Duy Tho
Improving Visual Perception of a Social Robot for Controlled and In-the-wild Human-robot Interaction
Zhong, Wangjie, Tian, Leimin, Le, Duy Tho, Rezatofighi, Hamid
Social robots often rely on visual perception to understand their users and the environment. Recent advancements in data-driven approaches for computer vision have demonstrated great potentials for applying deep-learning models to enhance a social robot's visual perception. However, the high computational demands of deep-learning methods, as opposed to the more resource-efficient shallow-learning models, bring up important questions regarding their effects on real-world interaction and user experience. It is unclear how will the objective interaction performance and subjective user experience be influenced when a social robot adopts a deep-learning based visual perception model. We employed state-of-the-art human perception and tracking models to improve the visual perception function of the Pepper robot and conducted a controlled lab study and an in-the-wild human-robot interaction study to evaluate this novel perception function for following a specific user with other people present in the scene.
JRDB-Pose: A Large-scale Dataset for Multi-Person Pose Estimation and Tracking
Vendrow, Edward, Le, Duy Tho, Cai, Jianfei, Rezatofighi, Hamid
Autonomous robotic systems operating in human environments must understand their surroundings to make accurate and safe decisions. In crowded human scenes with close-up human-robot interaction and robot navigation, a deep understanding requires reasoning about human motion and body dynamics over time with human body pose estimation and tracking. However, existing datasets either do not provide pose annotations or include scene types unrelated to robotic applications. Many datasets also lack the diversity of poses and occlusions found in crowded human scenes. To address this limitation we introduce JRDB-Pose, a large-scale dataset and benchmark for multi-person pose estimation and tracking using videos captured from a social navigation robot. The dataset contains challenge scenes with crowded indoor and outdoor locations and a diverse range of scales and occlusion types. JRDB-Pose provides human pose annotations with per-keypoint occlusion labels and track IDs consistent across the scene. A public evaluation server is made available for fair evaluation on a held-out test set. JRDB-Pose is available at https://jrdb.erc.monash.edu/ .