Lanier, Michael
Learning Policy Committees for Effective Personalization in MDPs with Diverse Tasks
Ge, Luise, Lanier, Michael, Sarkar, Anindya, Guresti, Bengisu, Vorobeychik, Yevgeniy, Zhang, Chongjie
Many dynamic decision problems, such as robotic control, involve a series of tasks, many of which are unknown at training time. Typical approaches for these problems, such as multi-task and meta reinforcement learning, do not generalize well when the tasks are diverse. On the other hand, approaches that aim to tackle task diversity, such as using task embedding as policy context and task clustering, typically lack performance guarantees and require a large number of training tasks. To address these challenges, we propose a novel approach for learning a policy committee that includes at least one near-optimal policy with high probability for tasks encountered during execution. While we show that this problem is in general inapproximable, we present two practical algorithmic solutions. The first yields provable approximation and task sample complexity guarantees when tasks are low-dimensional (the best we can do due to inapproximability), whereas the second is a general and practical gradient-based approach. In addition, we provide a provable sample complexity bound for few-shot learning. Our experiments on MuJoCo and Meta-World show that the proposed approach outperforms state-of-the-art multi-task, meta-, and task clustering baselines in training, generalization, and few-shot learning, often by a large margin.
Attacks on Node Attributes in Graph Neural Networks
Xu, Ying, Lanier, Michael, Sarkar, Anindya, Vorobeychik, Yevgeniy
Graphs are commonly used to model complex networks prevalent in modern social media and literacy applications. Our research investigates the vulnerability of these graphs through the application of feature based adversarial attacks, focusing on both decision time attacks and poisoning attacks. In contrast to state of the art models like Net Attack and Meta Attack, which target node attributes and graph structure, our study specifically targets node attributes. For our analysis, we utilized the text dataset Hellaswag and graph datasets Cora and CiteSeer, providing a diverse basis for evaluation. Our findings indicate that decision time attacks using Projected Gradient Descent (PGD) are more potent compared to poisoning attacks that employ Mean Node Embeddings and Graph Contrastive Learning strategies. This provides insights for graph data security, pinpointing where graph-based models are most vulnerable and thereby informing the development of stronger defense mechanisms against such attacks.
Learning Interpretable Policies in Hindsight-Observable POMDPs through Partially Supervised Reinforcement Learning
Lanier, Michael, Xu, Ying, Jacobs, Nathan, Zhang, Chongjie, Vorobeychik, Yevgeniy
Deep reinforcement learning has demonstrated remarkable achievements across diverse domains such as video games, robotic control, autonomous driving, and drug discovery. Common methodologies in partially-observable domains largely lean on end-to-end learning from high-dimensional observations, such as images, without explicitly reasoning about true state. We suggest an alternative direction, introducing the Partially Supervised Reinforcement Learning (PSRL) framework. At the heart of PSRL is the fusion of both supervised and unsupervised learning. The approach leverages a state estimator to distill supervised semantic state information from high-dimensional observations which are often fully observable at training time. This yields more interpretable policies that compose state predictions with control. In parallel, it captures an unsupervised latent representation. These two-the semantic state and the latent state-are then fused and utilized as inputs to a policy network. This juxtaposition offers practitioners a flexible and dynamic spectrum: from emphasizing supervised state information to integrating richer, latent insights. Extensive experimental results indicate that by merging these dual representations, PSRL offers a potent balance, enhancing model interpretability while preserving, and often significantly outperforming, the performance benchmarks set by traditional methods in terms of reward and convergence speed.
A Visual Active Search Framework for Geospatial Exploration
Sarkar, Anindya, Lanier, Michael, Alfeld, Scott, Feng, Jiarui, Garnett, Roman, Jacobs, Nathan, Vorobeychik, Yevgeniy
Many problems can be viewed as forms of geospatial search aided by aerial imagery, with examples ranging from detecting poaching activity to human trafficking. We model this class of problems in a visual active search (VAS) framework, which has three key inputs: (1) an image of the entire search area, which is subdivided into regions, (2) a local search function, which determines whether a previously unseen object class is present in a given region, and (3) a fixed search budget, which limits the number of times the local search function can be evaluated. The goal is to maximize the number of objects found within the search budget. We propose a reinforcement learning approach for VAS that learns a meta-search policy from a collection of fully annotated search tasks. This meta-search policy is then used to dynamically search for a novel target-object class, leveraging the outcome of any previous queries to determine where to query next. Through extensive experiments on several large-scale satellite imagery datasets, we show that the proposed approach significantly outperforms several strong baselines. We also propose novel domain adaptation techniques that improve the policy at decision time when there is a significant domain gap with the training data. Code is publicly available.