Lan, Lin
Federated Learning over Coupled Graphs
Lei, Runze, Wang, Pinghui, Zhao, Junzhou, Lan, Lin, Tao, Jing, Deng, Chao, Feng, Junlan, Wang, Xidian, Guan, Xiaohong
Graphs are widely used to represent the relations among entities. When one owns the complete data, an entire graph can be easily built, therefore performing analysis on the graph is straightforward. However, in many scenarios, it is impractical to centralize the data due to data privacy concerns. An organization or party only keeps a part of the whole graph data, i.e., graph data is isolated from different parties. Recently, Federated Learning (FL) has been proposed to solve the data isolation issue, mainly for Euclidean data. It is still a challenge to apply FL on graph data because graphs contain topological information which is notorious for its non-IID nature and is hard to partition. In this work, we propose a novel FL framework for graph data, FedCog, to efficiently handle coupled graphs that are a kind of distributed graph data, but widely exist in a variety of real-world applications such as mobile carriers' communication networks and banks' transaction networks. We theoretically prove the correctness and security of FedCog. Experimental results demonstrate that our method FedCog significantly outperforms traditional FL methods on graphs. Remarkably, our FedCog improves the accuracy of node classification tasks by up to 14.7%.
Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network Embedding
Lan, Lin, Wang, Pinghui, Du, Xuefeng, Song, Kaikai, Tao, Jing, Guan, Xiaohong
We study the problem of node classification on graphs with few-shot novel labels, which has two distinctive properties: (1) There are novel labels to emerge in the graph; (2) The novel labels have only a few representative nodes for training a classifier. The study of this problem is instructive and corresponds to many applications such as recommendations for newly formed groups with only a few users in online social networks. To cope with this problem, we propose a novel Meta Transformed Network Embedding framework (MetaTNE), which consists of three modules: (1) A \emph{structural module} provides each node a latent representation according to the graph structure. (2) A \emph{meta-learning module} captures the relationships between the graph structure and the node labels as prior knowledge in a meta-learning manner. Additionally, we introduce an \emph{embedding transformation function} that remedies the deficiency of the straightforward use of meta-learning. Inherently, the meta-learned prior knowledge can be used to facilitate the learning of few-shot novel labels. (3) An \emph{optimization module} employs a simple yet effective scheduling strategy to train the above two modules with a balance between graph structure learning and meta-learning. Experiments on four real-world datasets show that MetaTNE brings a huge improvement over the state-of-the-art methods.
Meta Reinforcement Learning with Task Embedding and Shared Policy
Lan, Lin, Li, Zhenguo, Guan, Xiaohong, Wang, Pinghui
Despite significant progress, deep reinforcement learning (RL) suffers from data-inefficiency and limited generalization. Recent efforts apply meta-learning to learn a meta-learner from a set of RL tasks such that a novel but related task could be solved quickly. Though specific in some ways, different tasks in meta-RL are generally similar at a high level. However, most meta-RL methods do not explicitly and adequately model the specific and shared information among different tasks, which limits their ability to learn training tasks and to generalize to novel tasks. In this paper, we propose to capture the shared information on the one hand and meta-learn how to quickly abstract the specific information about a task on the other hand. Methodologically, we train an SGD meta-learner to quickly optimize a task encoder for each task, which generates a task embedding based on past experience. Meanwhile, we learn a policy which is shared across all tasks and conditioned on task embeddings. Empirical results on four simulated tasks demonstrate that our method has better learning capacity on both training and novel tasks and attains up to 3 to 4 times higher returns compared to baselines.