Goto

Collaborating Authors

 Lan, Gael Le


Masked Audio Generation using a Single Non-Autoregressive Transformer

arXiv.org Artificial Intelligence

T, a masked generative sequence modeling method that operates directly over several streams of audio tokens. T is comprised of a single-stage, non-autoregressive transformer. During training, we predict spans of masked tokens obtained from a masking scheduler, while during inference we gradually construct the output sequence using several decoding steps. T, which will be then used for later decoding steps. T, in which we fuse between autoregressive and non-autoregressive models to generate the first few seconds in an autoregressive manner while the rest of the sequence is being decoded in parallel. T for the task of text-to-music and text-to-audio generation and conduct an extensive empirical evaluation, considering both objective metrics and human studies. The proposed approach is comparable to the evaluated baselines, while being significantly faster (x7 faster than the autoregressive baseline). Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/MAGNeT Recent developments in self-supervised representation learning (Hsu et al., 2021; Défossez et al., 2022), sequence modeling (Touvron et al., 2023; Rozière et al., 2023), and audio synthesis (Lee et al., 2022; Polyak et al., 2021) allow a great leap in performance when considering high quality conditional audio generation. Recently, Défossez et al. (2022); Zeghidour et al. (2021) proposed to apply a VQ-VAE directly on the raw waveform using residual vector quantization to obtain a multi-stream discrete representation of the audio signal. Later on, Kreuk et al. (2022a); Wang et al. (2023); Zhang et al. (2023); Copet et al. (2023); Kreuk et al. (2022b) presented a conditional language modeling on such audio signals representations. In parallel, Schneider et al. (2023); Huang et al. (2023b); Liu et al. (2023a) proposed training a conditional diffusion-based generative model operating on learned continuous representations of the audio signal obtained from a pre-trained auto-encoder model. Work was done as part of Alon's internship at FAIR.


In-Context Prompt Editing For Conditional Audio Generation

arXiv.org Artificial Intelligence

Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.


Enhance audio generation controllability through representation similarity regularization

arXiv.org Artificial Intelligence

This paper presents an innovative approach to enhance control over audio generation by emphasizing the alignment between audio and text representations during model training. In the context of language model-based audio generation, the model leverages input from both textual and audio token representations to predict subsequent audio tokens. However, the current configuration lacks explicit regularization to ensure the alignment between the chosen text representation and the language model's predictions. Our proposal involves the incorporation of audio and text representation regularization, particularly during the classifier-free guidance (CFG) phase, where the text condition is excluded from cross attention during language model training. The aim of this proposed representation regularization is to minimize discrepancies in audio and text similarity compared to other samples within the same training batch. Experimental results on both music and audio generation tasks demonstrate that our proposed methods lead to improvements in objective metrics for both audio and music generation, as well as an enhancement in the human perception for audio generation.