Goto

Collaborating Authors

 Lambert, John


SceneDiffuser: Efficient and Controllable Driving Simulation Initialization and Rollout

arXiv.org Artificial Intelligence

Realistic and interactive scene simulation is a key prerequisite for autonomous vehicle (AV) development. In this work, we present SceneDiffuser, a scene-level diffusion prior designed for traffic simulation. It offers a unified framework that addresses two key stages of simulation: scene initialization, which involves generating initial traffic layouts, and scene rollout, which encompasses the closed-loop simulation of agent behaviors. While diffusion models have been proven effective in learning realistic and multimodal agent distributions, several challenges remain, including controllability, maintaining realism in closed-loop simulations, and ensuring inference efficiency. To address these issues, we introduce amortized diffusion for simulation. This novel diffusion denoising paradigm amortizes the computational cost of denoising over future simulation steps, significantly reducing the cost per rollout step (16x less inference steps) while also mitigating closed-loop errors. We further enhance controllability through the introduction of generalized hard constraints, a simple yet effective inference-time constraint mechanism, as well as language-based constrained scene generation via few-shot prompting of a large language model (LLM). Our investigations into model scaling reveal that increased computational resources significantly improve overall simulation realism. We demonstrate the effectiveness of our approach on the Waymo Open Sim Agents Challenge, achieving top open-loop performance and the best closed-loop performance among diffusion models.


The Waymo Open Sim Agents Challenge

arXiv.org Artificial Intelligence

Simulation with realistic, interactive agents represents a key task for autonomous vehicle software development. In this work, we introduce the Waymo Open Sim Agents Challenge (WOSAC). WOSAC is the first public challenge to tackle this task and propose corresponding metrics. The goal of the challenge is to stimulate the design of realistic simulators that can be used to evaluate and train a behavior model for autonomous driving. We outline our evaluation methodology, present results for a number of different baseline simulation agent methods, and analyze several submissions to the 2023 competition which ran from March 16, 2023 to May 23, 2023. The WOSAC evaluation server remains open for submissions and we discuss open problems for the task.


Distributed Global Structure-from-Motion with a Deep Front-End

arXiv.org Artificial Intelligence

While initial approaches to Structure-from-Motion (SfM) revolved around both global and incremental methods, most recent applications rely on incremental systems to estimate camera poses due to their superior robustness. Though there has been tremendous progress in SfM `front-ends' powered by deep models learned from data, the state-of-the-art (incremental) SfM pipelines still rely on classical SIFT features, developed in 2004. In this work, we investigate whether leveraging the developments in feature extraction and matching helps global SfM perform on par with the SOTA incremental SfM approach (COLMAP). To do so, we design a modular SfM framework that allows us to easily combine developments in different stages of the SfM pipeline. Our experiments show that while developments in deep-learning based two-view correspondence estimation do translate to improvements in point density for scenes reconstructed with global SfM, none of them outperform SIFT when comparing with incremental SfM results on a range of datasets. Our SfM system is designed from the ground up to leverage distributed computation, enabling us to parallelize computation on multiple machines and scale to large scenes.


Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting

arXiv.org Artificial Intelligence

We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.


Deep Learning under Privileged Information Using Heteroscedastic Dropout

arXiv.org Machine Learning

Unlike machines, humans learn through rapid, abstract model-building. The role of a teacher is not simply to hammer home right or wrong answers, but rather to provide intuitive comments, comparisons, and explanations to a pupil. This is what the Learning Under Privileged Information (LUPI) paradigm endeavors to model by utilizing extra knowledge only available during training. We propose a new LUPI algorithm specifically designed for Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). We propose to use a heteroscedastic dropout (i.e. dropout with a varying variance) and make the variance of the dropout a function of privileged information. Intuitively, this corresponds to using the privileged information to control the uncertainty of the model output. We perform experiments using CNNs and RNNs for the tasks of image classification and machine translation. Our method significantly increases the sample efficiency during learning, resulting in higher accuracy with a large margin when the number of training examples is limited. We also theoretically justify the gains in sample efficiency by providing a generalization error bound decreasing with $O(\frac{1}{n})$, where $n$ is the number of training examples, in an oracle case.